D. E. Portlock et al. / Tetrahedron Letters 43 (2002) 6845–6847
6847
Since building blocks of structure 4 (R2=H) were of
interest to us for combinatorial library production,5 we
wondered if they could be prepared from the unsubsti-
tuted hydrazine, 3 (R1=t-BuO; R2=H). However,
when BocNHNH2 was subjected to the same Petasis
boronic acid–Mannich reaction conditions, a complex
mixture of products was obtained (LC-MS). Neverthe-
less, the desired product 4l could be prepared in 71%
yield by first pre-forming the presumed intermediate,
BocNHNꢀCHCO2H and then adding an aryl boronic
acid in CH2Cl2 at ambient temperature. Furthermore,
4l could also be obtained by catalytic debenzylation of
4g. Using this protective group strategy, 4l was
obtained (H2 balloon, 10% Pd–C, abs. EtOH) in 71%
yield after purification by flash chromatography. As
expected, the Boc group in 3 could be replaced by a
CBZ, e.g. 4m was obtained cleanly in 60% yield. And
finally, the commercially available semicarbazide 3n
was examined. Although the expected product 4n was
obtained, the yield was poor (LC-MS, 20%) and formed
as a complex mixture of products.
7. Ferguson, M. D.; Meara, J. P.; Nakanishi, H.; Lee, M.
S.; Kahn, M. Tetrahedron Lett. 1997, 38, 6961.
8. Meara, J. P.; Cao, B.; Urban, J.; Nakanishi, H.; Yeung,
E.; Kahn, M. Peptides 1994 (Proceedings 23th Eur Pept
Symp); Maia, H. L. S., Ed., ESCOM, 1995; p. 692.
9. (a) Schmidt, U.; Riedl, B. Synthesis 1993, 809; (b) Rutjes,
F. P. J. T.; Teerhuis, N. M.; Heimstra, H.; Speckamp, W.
M. Tetrahedron 1993, 49, 8605; (c) Hale, K. J.; Delisser,
V. M.; Manaviazar, S. Tetrahedron Lett. 1992, 33, 7613;
(d) Kasahara, K.; Iida, H.; Kibayashi, C. J. Org. Chem.
1989, 54, 2225; (e) Bevan, K.; Davies, J. S.; Hassall, C.
H.; Morton, R. B.; Phillips, D. A. S. J. Chem. Soc. (C)
1971, 514.
10. (a) Greenlee, W. J.; Thorsett, E. D.; Springer, J. P.;
Patchett, A. A. Biochem. Biophys. Res. Commun. 1984,
122, 791; (b) Karady, S.; Ly, M. G.; Pines, S. H.;
Sletzinger, M. J. Org. Chem. 1971, 36, 1946; (c) Slet-
zinger, M.; Firestone, R. A.; Reinhold, D. F.; Rooney, C.
S. J. Med. Chem. 1968, 11, 261; (d) Glamkowski, E. J.;
Gal, G.; Sletzinger, M.; Porter, C. C.; Watson, L. S. J.
Med. Chem. 1967, 10, 852.
11. Ramurthy, S.; Lee, M. S.; Nakanishi, H.; Shen, R.;
Kahn, M. Bioorg. Med. Chem. 1994, 2, 1007.
In summary, we have demonstrated that N-1-(carba-
mate protected)-N-2-(alkyl or aryl substituted) hydrazi-
nes can serve as amine substrates for the Petasis
boronic acid–Mannich reaction providing a practical
synthetic route for the preparation of a-hydrazinocar-
boxylic acids. Further studies related to the utility of
products 4 as intermediate building blocks for a tandem
Petasis-Ugi multicomponent condensation have been
disclosed16 and complete experimental details will be
reported in due course.
12. (a) Oguz, U.; Guilbeau, G. G.; McLaughlin, M. L.
Tetrahedron Lett. 2002, 43, 2873; (b) Burk, M. J.; Mar-
tinez, J. P.; Feaster, J. E.; Cosford, N. Tetrahedron 1994,
50, 4399; (c) Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc.
1992, 114, 6266; (d) Evans, D. A.; Britton, T. C.; Dorow,
R. L.; Dellaria, J. F. Tetrahedron 1988, 44, 5525.
13. (a) Dutta, A. S.; Morley, J. S. J. Chem. Soc., Perkin
Trans. 1 1975, 1712; (b) Fassler, A.; Bold, G.; Capraro,
H.-G.; Cozens, R.; Mestan, J.; Poncioni, B.; Rosel, J.;
Tintelnot-Blomley, M.; Lang, M. J. Med. Chem. 1996,
39, 3203.
14. Lenman, M. M.; Lewis, A.; Gani, D. J. Chem. Soc.,
Perkin Trans. 1 1997, 2297.
References
15. General procedure for the Petasis boronic acid–Mannich
reaction of substituted hydrazines 3 to prepare a-hydrazi-
noacids 4: to a stirred mixture of glyoxylic acid monohy-
drate (0.41 g, 4.4 mmol) in CH2Cl2 (23 mL) was added
N-1-Boc-N-2-(cyclohexylmethyl)-hydrazine (1.0 g, 4.4
mmol) followed by 4-methoxyphenylboronic acid (0.67 g,
4.4 mmol). The resulting mixture was stirred at ambient
temperature for 48 h and after this time, the CH2Cl2 was
removed under reduced pressure. The residue was
1. (a) Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc.
1997, 119, 445; (b) Petasis, N. A.; Goodman, A.;
Zavialov, I. A. Tetrahedron 1997, 53, 16463; (c) Hansen,
T. K.; Schlienger, N.; Hansen, B. S.; Andersen, P. H.;
Bryce, M. R. Tetrahedron 1999, 40, 3651; (d) Jiang, B.;
Yang, C.-G.; Gu, X.-H. Tetrahedron Lett. 2001, 42, 2545.
2. The Petasis boronic acid–Mannich reaction has also been
applied to the synthesis of heterocyclic systems: (a) Batey,
R. A.; MacKay, D. B.; Santhakumar, V. J. J. Am. Chem.
Soc. 1999, 121, 5075; (b) Petasis, N. A.; Patel, Z. D.
Tetrahedron Lett. 2000, 41, 9607; (c) Wang, Q.; Finn, M.
G. Org. Lett. 2000, 2, 4063; (d) Berree, F.; Debache, A.;
Marsac, Y.; Carboni, B. Tetrahedron Lett. 2001, 42, 3591
and references cited therein.
3. (a) Klopfenstein, S. R.; Chen, J. J.; Golebiowski, A.; Li,
M.; Peng, S. X.; Shao, X. Tetrahedron Lett. 2000, 41,
4835; (b) Schlienger, N.; Bryce, M. R.; Hansen, T. K.
Tetrahedron 2000, 56, 10023.
4. (a) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39,
3168; (b) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt,
P. Chem. Eur. J. 2000, 6, 3321.
purified
by
chromatography
(silica
gel,
40%
EtOAc:hexanes) to give 1.75 g (99%) of 4a as a hydro-
scopic white solid: Rf=0.18 (50% EtOAc:hexanes); ana-
lytical HPLC: Polaris C18 column (4.6×250 mm, 3
micron particle size), mobile phase 0.1% aqueous phos-
phoric acid/CH3CN linear gradient over 30 min, 1 mL/
min, one peak detected by ELS and UV at 215 nm,
tR=18.4 min; H NMR (CDCl3, 300 MHz): l 0.75–1.80
(m, 11H), 1.40 (s, 9H), 2.40–2.65 (m, 2H), 3.84 (s, 3H),
4.57 (s, 1H), 5.2 (br s, 1H), 6.93 (d, 2H), 7.21 (d, 2H); C
NMR (CDCl3, 75 MHz): l 26.21, 26.29, 26.76, 28.40,
31.43, 31.67, 35.86, 55.57, 72.60, 72.89, 82.21, 114.42,
131.31, 131.76, 157.26, 160.19, 172.69; LCMS (ELSD):
393 (M+H+).
5. Wilson, L. J.; Li, M.; Portlock, D. E. Tetrahedron Lett.
16. Presented in part at Cambridge Healthtech Institute’s
Seventh Annual ‘High Throughput Organic Synthesis’
Symposium, February 13–15, 2002, San Diego, CA.
1998, 39, 5135.
6. Gardner, B.; Nakanishi, H.; Kahn, M. Tetrahedron 1993,
49, 3433.