Micelles of Lipid-Oligonucleotide Conjugates
J. Phys. Chem. B, Vol. 108, No. 20, 2004 6497
60, 2638-2640. (c) Abraham, F. F.; Rudge, W. E.; Plischke, M. Phys. ReV.
Lett. 1989, 62, 1757-1759. (d) Gompper, G.; Kroll, D. M. Curr. Opin.
Colloid Surface Sci. 1997, 2, 373-381.
1389. (e) Tolochko, A.; Shevchuk, M.; Dombrovskii, A. J. Org. Chem.
USSR 1972, 8, 2443-2447. (f) Yanorskaya, L.; Umirzakov, B.; Kucherov,
V.; Yakovlev, I.; Zolotarev, B.; Chizhov, O.; Vorontsova, L.; Fundyler, I.
Tetrahedron 1973, 29, 4321-4329. (g) Cromwell, N.; Watson, W. J. Org.
Chem. 1949, 14, 411-420.
(32) Valeur, B. Molecular Fluorescence Principles and Applications;
Wiley-VCH: Weinheim, 2002.
(33) Gosse, C.; Boutorine, A. S.; Jullien, L.; He´le`ne, C. Nucleosides
Nucleotides 1999, 18, 1473-1476.
(34) Cantor, C. R.; Schimmel, P. R. Biophysical Chemistry, Part II;
Freeman: New York, 1980.
(35) Garcia De La Torre, J.; Bloomfield, V. A. Q. ReV. Biophys. 1981,
14, I, 81-139.
(36) (a) Berland, K. M.; So, P. T.; Chen, Y.; Mantulin, W. W.; Gratton,
E. Biophys. J. 1996, 71, 410-420. (b) Elson, E. L.; Magde, D. Biopolymers
1974, 13, 1-27. (c) For a comprehensive review: Thompson, N. L.
Fluorescence Correlation Spectroscopy in Topics in Fluorescence Spec-
troscopy, Volume 1; Lakowicz, J. R., Ed.; Plenum Press: New York, 1991;
pp 337-378.
(37) Delie, F.; Gurny, R.; Zimmer, A. Biol. Chem. 2001, 382, 487-
490.
(38) He, L.-Z.; Garamus, V.; Niemeyer, B.; Helmholz, H.; Willumeit,
R. J. Mol. Liq. 2000, 89, 239-249.
(4) (a) Wen, X.; Garland, C. W.; Hwa, T.; Kadar, M.; Kokufuta, E.;
Li, Y.; Orkisz, M.; Tanaka, T. Nature 1992, 355, 426-428. (b) Spector,
M. S.; Naranjo, E.; Chiruvolu, S.; Zasadzinski, J. A. Phys. ReV. Lett. 1994,
73, 2867-2870. (c) Schmidt, C. F.; Svoboda, K.; Lei, N.; Petsche, I. B.;
Berman, L. E.; Safinya, C. R.; Grest, G. S. Science 1993, 259, 952-955.
(5) (a) Pearse, B.; Robison, M. Annu. ReV. Cell. Biol. 1990, 6, 151-
171. (b) Marsh, M.; McMahon, H. Science 1999, 285, 215-220.
(6) Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.
Molecular Biology of the Cell; Garland: New York, 1994.
(7) Ringsdorf, H.; Schlarb, B.; Venzmer, J. Angew. Chem., Int. Ed.
Engl. 1988, 27, 113-158.
(8) Dubault, A.; Casagrande, C.; Veyssie´, M. J. Phys. Chem. 1975,
79, 2254-2259.
(9) (a) Miyano, K.; Veyssie´, M. Phys. ReV. Lett. 1984, 52, 1318-
1320. (b) Rehage, H.; Veyssie´, M. Angew. Chem., Int. Ed. Engl. 1990, 29,
439-448.
(10) (a) Gros, L.; Ringsdorf, H.; Schupp, H. Angew. Chem., Int. Ed.
Engl. 1981, 20, 305-325. (b) Fendler, J. Science 1984, 223, 888-894. (c)
Dvolaitzky, M.; Guedeau-Boudeville, M.-A.; Le´ger, L. Langmuir 1992, 8,
2595-2597. (d) O’Brien, D. F.; Armitage, B.; Benedicto, A.; Bennett, D.
E.; Lamparshi, H. G.; Lee, Y.-S.; Srisiri, W.; Sisson, T. M. Acc. Chem.
Res. 1998, 31, 861-868.
(39) Israelachvili, J. Intermolecular and Surfaces Forces, 2nd ed.;
Academic Press: San Diego, 1992.
(11) (a) Fukuda, H.; Diem, T.; Stefely, J.; Kezdy, F. J.; Regen, S. L. J.
Am. Chem. Soc. 1986, 108, 2321-2327. (b) Ringsdorf, H.; Schlarb, B.;
Tyminski, P. N.; O’Brien, D. F. Macromolecules 1988, 21, 671-677. (c)
Higashi, N.; Adachi, T.; Niwa, M. Macromolecules 1990, 23, 1475-1480.
(d) Lefevre, D.; Porteu, F.; Balog, P.; Roulliay, M.; Zalczer, G.; Palacin,
S. Langmuir 1993, 9, 150-161. (e) Asakuma, S.; Okada, H.; Kunitake, T.
J. Am. Chem. Soc. 1991, 113, 1749-1755.
(40) In the present paper, the association constants are adimensional
referring to the standard state: ideal solute at 1 M for the infinitely diluted
solution.
(41) Fo¨rster, T. Modern Quantum Chemistry; Sinanoglu, O., Ed.;
Academic Press: New York, 1965; Part III, pp 93-137.
(12) Stupp, S.; Son, S.; Li, L.; Lin, H.; Keser, M. J. Am. Chem. Soc.
1995, 117, 5212-5227.
(42) Jiang, Y.-B.; Wang, X.-J.; Lin, L. J. Phys. Chem. 1994, 98, 12367-
12372.
(13) Boutorin, A. S.; Gus’kova, L. V.; Ivanova, E. M.; Kobetz, N. D.;
Zarytova, V. F.; Ryte, A. S.; Yurchenko, L. V.; Vlassov, V. V. FEBS Lett.
1989, 254, 129-132.
(14) Krieg, A. M.; Tonkinson, J.; Matson, S.; Zhao, Q.; Saxon, M.;
Zhang, L.-M.; Bhanja, U.; Yakubov, L.; Stein, C. A. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 1048-1052.
(15) Shea, R. G.; Marsters, J. C.; Bischofberger, N. Nucleic Acids Res.
1990, 18, 3777-3783.
(16) (a) MacKellar, C.; Graham, D.; Will, D. W.; Burgess, S.; Brown,
T. Nucleic Acids Res. 1992, 20, 3411-3417. (b) Manoharan, M.; Tivel, K.
L.; Cook, P. D. Tetrahedron Lett. 1995, 36, 3651-3654.
(17) Letsinger, R. L.; Alul, R. A.; Farooqui, F.; Gryaznov, S. M.;
Kinstler, O. Nucleic Acids Res. 1991, Symp. Ser. 24, 75-78.
(18) Bichenkov, E. E.; Budker, V. G.; Zarytova, V. F.; Ivanova, E.
M.; Lokhov, S. G.; Savchenko, E. V.; Teplova, N. M. Biol. Membr. 1988,
5, 735-742.
(19) Tomkins, J. M.; Barnes, K. J.; Blaker, A. J.; Watkins, W. J.; Abell,
C. Tetrahedron Lett. 1997, 38, 691-694.
(20) Boutorine, A. S.; Tokuyama, H.; Takasugi, M.; Isobe, H.;
Makamura, E.; He´le`ne, C. Angew. Chem., Int. Ed. Engl. 1994, 33, 2462-
2465.
(43) Their morphology was not further investigated; unfortunately,
satisfactory EM pictures of these objects could not be obtained.
(44) Kuzelova´, K.; Brault, D. Biochemistry, 1994, 33, 9447-9459.
(45) See for instance: Marchi, V.; Jullien, L.; Lehn, J.-M.; Belloni, L.;
Raison, D. J. Phys. Chem. 1996, 100, 13844-13856.
(46) Breslauer, K. Methods Mol. Biol. 1994, 26, 347-373.
(47) In absolute ethanol, for the hydroxy-terminated lipid 8, we have
ꢀ8(λmax ) 428 nm)/ꢀ8(λ ) 260 nm) ) 0.25. Upon assuming the latter ratio
to lie in the same range for the chalcone conjugated to the oligonucleotide,
one anticipates the fluorophore contribution to the absorption of lGeB and
lGeB′ at 260 nm to be less than 5% so as to justify to base the concentration
determination on the DNA contribution only.
(48) Chen, R. F.; Bowman, R. Science 1965, 147, 729-732.
(49) Webb, R. H. Rep. Prog. Phys. 1996, 59, 427-471.
(50) Eggeling, C.; Widengren, J.; Rigler, R.; Seidel, C. A. M. Anal.
Chem. 1998, 70, 2651-2659.
(51) Mimms, L. T.; Zampighi, G.; Nozaki, Y.; Tanford, C.; Reynolds,
J. A. Biochemistry 1981, 20, 833-840.
(52) Rigaud, J.-L.; Levy, D.; Mosser, G.; Lambert, O. Eur. Biophys. J.
1998, 27, 305-319.
(53) Halloway, P. W. Anal. Biochem. 1973, 53, 304-308.
(54) See for instance: Jullien, L.; Canceill, J.; Valeur, B.; Bardez, E.;
Lefe`vre, J.-P.; Lehn, J.-M.; Marchi-Artzner, V.; Pansu, R. J. Am. Chem.
Soc. 1996, 118, 5432-5442. In fact, eq 9 requires that the total concentration
in lDNA remains constant during the titration to be valid. Under the present
experimental conditions, the dilution is too large to consider this assumption
to be fulfilled. Consequently, fluorescence intensities were corrected from
dilution before analysis. Nevertheless, this correction is not sufficient to
account for the change of association extent upon changing the lDNA
concentration. Therefore, eq 9 was first used to derive orders of magnitude
for the association constant and for the alteration of the lDNA emission
properties. Then the latter estimates were further refined from numerical
simulations.
(21) (a) Letsinger, R. L.; Zhang, G.; Sun, D. K.; Ikeuchi, T.; Sarin, P.
S. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6553-6556. (b) Stein, C. A.;
Pal, R.; DeVico, A. L.; Hoke, G.; Mumbauer, S.; Kinstler, O.; Sarngadharan,
M. G.; Letsinger, R. L. Biochemistry 1991, 30, 2439-2444.
(22) Cheng, T. R.; Huang, C. H.; Gan, L. B.; Luo, C. P.; Yu, A. C.;
Zhao, X. S. J. Mater. Chem. 1998, 8, 931-935.
(23) (a) Lupo, D.; Prass, W.; Scheunemann, U.; Laschewsky, A.;
Ringsdorf, H.; Ledoux, I. J. Opt. Soc. Am. B 1988, 5, 300-308. (b) Jones,
G.; Stanpforth, S. Org. React. 1997, 49, 1-330.
(24) Pfeiffer, P. Ann. Chem. 1925, 441, 228-265.
(25) (a) Na¨geli, H.; Tambor, J. HelV. Chem. Acta 1924, 7, 333-336.
(b) McLean, I.; Widdows, S. J. Chem. Soc. 1914, 105, 2169-2175.
(26) Nakaya, K.; Funabiki, K.; Shibata, K.; Muramatsu, H.; Matsui,
M. Bull. Chem. Soc. Jpn. 1996, 69, 2961-2966.
(27) Matsui, M.; Oji, A.; Hiramatsu, K.; Shibata, K.; Muramatsu, H. J.
Chem. Soc., Perkin Trans. 2 1992, 2, 201-206.
(28) (a) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801-811.
(b) Garreg, P.; Samulsson, B. J. Chem. Soc., Perkin Trans. 1 1980, 2866-
2869.
(55) In a first step, it was taken equal to the starting concentration during
the titration. See ref 54.
(56) Krichevsky, O.; Bonnet, G. Rep. Prog. Phys. 2001, 64, 1-47.
(57) Fukada, H.; Takahashi, K. Proteins 1998, 33, 159-166.
(29) Grimm, G. N.; Boutorine, A. S.; He´le`ne, C. Nucleos. Nucleot.
(58) We noticed that the absorbance of BOBO3 slowly decreased in
100 mM NaCl, 10 mM Na(CH3)2AsO2-HCl pH 7 buffer. We supposed that
BOBO3 may be hydrolyzed under such conditions. We measured the rate
constants for BOBO3 degradation at different temperatures in the absence
or in the presence of C/G. Results are given in Supporting Information,
Figure 7S and Table 2S. They essentially reveal that (i) DNA protects
BOBO3 against decomposition; (ii) BOBO3 degradation remains slow at
the time scale of the present assay so as to neglect it for interpreting
experimental data.
Nucleic Acids 2000, 19, 1943-1965.
(30) Reichardt, C. SolVents and SolVent Effects in Organic Chemistry;
VCH Publishers: Cambridge, 1988.
(31) (a) Nikitina, A.; Fedyunina, G.; Umirzakov, B.; Yanovskaya, L.;
Kucherov, V.; Opt. Spectrosc. 1973, 34, 163-165. (b) Katzenellenbogen,
E.; Branch, G.; J. Am. Chem. Soc. 1947, 69, 1615-1619. (c) Gustav, K.;
Bartsch, U.; Karnitzschky, K. Z. Chem. 1989, 29, 213-214. (d) Lavrishin,
V.; Dzyuba, V.; Tolmachev, V. J. Gen. Chem. USSR 1966, 36, 1385-