Full Paper
[6] H. Hopf, Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspec-
tives, Wiley-VCH, Weinheim, 2000, pp. 226–227.
[7] M. M. Haley, J. J. Pak, S. C. Brand in Topics in Current Chemistry: Carbon
Rich Compounds II (Ed.: A. De Meijere), Springer-Verlag, 1999, vol. 201,
pp. 81–130.
to an increased understanding of the Stephens–Castro reaction
and contribute to the further development of dehydrotri-
aryl[12]annulenes and their higher cyclic oligomers as a well-
spring of new materials.
[8] J. Jusélius, D. Sundholm, Phys. Chem. Chem. Phys. 2001, 3, 2433–2437.
[9] A. J. Matzger, K. P. C. Vollhardt, Tetrahedron Lett. 1998, 39, 6791–6794.
[10] T. A. Schaub, M. Kivala in Metal-Catalyzed Cross-Coupling Reactions and
More (Eds.: A. de Meijere, S. Bräse, M. Oestreich), Wiley-VCH, Weinheim,
2014, Ch. 9, pp. 665–667.
[11] R. D. Stephens, C. E. Castro, J. Org. Chem. 1963, 28, 3313–3315.
[12] K. Tahara, T. Yoshimura, M. Sonoda, Y. Tobe, R. V. Williams, J. Org. Chem.
2007, 72, 1437–1442.
[13] N. Narita, S. Nagai, S. Suzuki, Phys. Rev. B 2001, 64, 245408–1–245408–7.
[14] N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 2000, 62, 11146–
11151.
[15] U. H. F. Bunz, Y. Rubin, Y. Tobe, Chem. Soc. Rev. 1999, 28, 107–119.
[16] N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 1998, 58, 11009–
11014.
Supporting Information. General experimental methods, General
procedures for the syntheses of 1 and 2 and attempted synthesis
of 3, isolation and purification of 4, preparation and characteriza-
tion of 6, 8 and 10 for the thermochemical and TEM studies. Physi-
cal Methods: UV/Vis, Luminescence Spectroscopic Infrared and TEM
experimental, 1H NMR spectra of 1 and 2, and 1H and 13C NMR
spectra of 4 with peak assignments, General X-ray experimental,
Crystallographic data, refinements and ORTEP representations for 4
and [Cu2(μ-I)2Py4] with atom numbering, Calculated Structure Carte-
sian Coordinates of [83Cu(Py)4]+ and [83Cu(Py)]+, and references
(continued).
CCDC 1951505 (for 4), 1951506 {for [Cu2(μ-I)2Py4]} contain the sup-
[17] R. H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 1987, 87, 6687–
6699.
[18] W. J. Youngs, C. A. Tessier, J. D. Bradshaw, Chem. Rev. 1999, 99, 3153–
3180.
[19] J. D. Ferrara, A. A. Tanaka, C. Fierro, C. A. Tessier-Youngs, W. J. Youngs,
Organometallics 1989, 8, 2089–2098.
[20] J. D. Ferrara, C. A. Tessier-Youngs, W. J. Youngs, J. Am. Chem. Soc. 1985,
107, 6719–6721.
Acknowledgments
The Centre National de la Recherche Scientifique and the Insti-
tut Charles Sadron is acknowledged for financial support
(P. N. W. B), and the Ministère de l′Enseignement Supérieur et
de la Recherche for a PhD fellowship (A. A.). M. Legros and
C. Saettel of the ICS are thanked for recording the TGA, and
Dr B. Heinrich of the IPCMS, Strasbourg, is thanked for the DSC
measurement, and Dr L. Allouche and B. Vincent of the Service
RMN, GDS 3648-CNRS-UdS, are thanked for recording the 13C
NMR of 4, and Dr E. Wasielewski of the Cronenbourg NMR Core
Facility, UMR 7042, for the 2-D correlation NMR of 13-15.
Noémie Bourgeois of the Service d'analyses, de mesures phy-
siques et de spectroscopie optique, Fédération de Chimie "Le
Bel" - FR 2010 (Unistra - CNRS)
[21] K. Tahara, Y. Yamamoto, D. E. Gross, H. Kozuma, Y. Arikuma, K. Ohta, Y.
Koizumi, Y. Gao, Y. Shimizu, S. Seki, K. Kamada, J. S. Moore, Y. Tobe, Chem.
Eur. J. 2013, 19, 11251–11260.
[22] K. Tahara, T. Yoshimura, M. Ohno, M. Sonoda, Y. Tobe, Chem. Lett. 2007,
36, 838–839.
[23] C. A. Johnson II, Y. Lu, M. M. Haley, Org. Lett. 2007, 9, 3725–3728.
[24] T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R. V. Williams, Org.
Lett. 2006, 8, 2933–2936.
[25] M. Iyoda, S. Sirinintasak, Y. Nishiyama, A. Vorasingha, F. Sultana, K. Nakao,
Y. Kuwatani, H. Matsuyama, M. Yoshida, Y. Miyake, Synthesis 2004, 1527–
1531.
[26] M. Sonoda, Y. Sakai, T. Yoshimura, Y. Tobe, K. Kamada, Chem. Lett. 2004,
33, 972–973.
[27] O. Š. Miljanić, K. P. C. Vollhardt, G. D. Whitener, Synlett 2003, 29–34.
[28] J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen, M. M.
Haley, Org. Lett. 2000, 2, 969–972.
[29] H. Nishide, M. Takahashi, J. Takashima, Y.-J. Pu, E. Tsuchida, J. Org. Chem.
1999, 64, 7375–7380.
[30] Y. J. Pu, M. Takahashi, E. Tsuchida, H. Nishide, Chem. Lett. 1999, 28, 161–
162.
is thanked for the elemental analyses, and Corinne Bailly of the
Service de Radiocristallographie, Fédération de Chimie “Le Bel” -
FR2010, for the Cambridge Crystallographic Database searches.
Professor J. D. Wallace of Nottingham Trent University, G. Britain,
is kindly thanked for insightfull discussions.
[31] K. Kamada, L. Antonov, S. Yamada, K. Ohta, T. Yoshimura, K. Tahara, A.
Inaba, M. Sonoda, Y. Tobe, ChemPhysChem 2007, 8, 2671–2677.
[32] S. H. Seo, T. V. Jones, H. Seyler, J. O. Peters, T. H. Kim, J. Y. Chang, G. N.
Tew, J. Am. Chem. Soc. 2006, 128, 9264–9265.
Keywords: Alkynes · Annulenes · Cross-coupling ·
Cuprates · Macrocycles
[33] S. H. Seo, J. Y. Chang, G. N. Tew, Angew. Chem. Int. Ed. 2006, 45, 7526–
7530; Angew. Chem. 2006, 118, 7688–7692.
[34] H. Shigemitsu, I. Hisaki, E. Kometani, D. Yasumiya, Y. Sakamoto, K. Osaka,
T. S. Thakur, A. Saeki, S. Seki, F. Kimura, T. Kimura, N. Tohnai, M. Miyata,
Chem. Eur. J. 2013, 19, 15366–15377.
[35] N. Saito, R. Terakawa, M. Yamaguchi, Chem. Eur. J. 2014, 20, 5601–5607.
[36] I. Hisaki, H. Senga, H. Shigemitsu, N. Tohnai, M. Miyata, Chem. Eur. J.
2011, 17, 14348–14353.
[37] K. Tahara, T. Fujita, M. Sonoda, M. Shiro, Y. Tobe, J. Am. Chem. Soc. 2008,
130, 14339–14345.
[38] M. Kiguchi, K. Tahara, Y. Takahashi, K. Hasui, Y. Tobe, Chem. Lett. 2010,
39, 788–789.
[39] I. Hisaki, Y. Sakamoto, H. Shigemitsu, N. Tohnai, M. Miyata, S. Seki, A.
Saeki, S. Tagawa, Chem. Eur. J. 2008, 14, 4178–4187.
[40] I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda, M. Tashiro, H.
Tsuchida, T. Ogoshi, H. Sato, N. Tohnai, M. Miyata, J. Am. Chem. Soc. 2016,
138, 6617–6628.
[1] Named variously in the literature as tribenzocyclyne and tribenzocyclo-
triyne (TBC), benzo[12]annulene, dehydrobenzo[12]annulene and tris-
dehydrotribenzo[12]annulene ([12]DBA), tribenzohexadehydro[12]an-
nulene, hexadehydrotribenzo[12]annulene, hexadehydrotribenzo[a,e,i]-
[12]annulene, 5,6,11,12,17,18-hexadehydrotribenzo[a,e,i]cyclododecene
(TBC), 1,2:5,6:9,10-tribenzocyclododeca-1,5,9-triene-3,7,11-triyne and
1,2:5,6:9,10-tribenzo-3,7,11-tridehydro[12]annulene. For the sake of brev-
ity and due to frequent use in the literature, this class of compound is
herein referred to as dehydrotribenzo[12]annulene or the abbreviation
[12]DBA.
[2] I. D. Campbell, G. Eglinton, W. Henderson, R. A. Raphael, J. Chem. Soc.,
Chem. Commun. 1966, 4, 87–89.
[3] H. A. Staab, F. Graf, Tetrahedron Lett. 1966, 7, 751–757.
[4] H. A. Staab, F. Graf, Chem. Ber. 1970, 103, 1107–1118.
[5] Y. Tobe, M. Sonoda in Modern Cyclophane Chemistry (Eds.: H. Hopf, R.
Gleiter), Wiley-VCH, Weinheim, 2004, Ch. 1, pp. 1–40.
[41] I. Hisaki, S. Nakagawa, Y. Suzuki, N. Tohnai, Chem. Lett. 2018, 47, 1143–
1146.
Eur. J. Org. Chem. 2019, 6783–6795
6793
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim