Page 9 of 10
Journal of the American Chemical Society
Hugo, R. Method for producing formic acid by reacting carbon
13. Metsänen, T. T.; Oestreich, M. Temperature-Dependent
Chemoselective Hydrosilylation of Carbon Dioxide to Formaldehyde
or Methanol Oxidation State. Organometallics 2015, 34, 543-546.
14. Ríos, P.; Curado, N.; López-Serrano, J.; Rodríguez, A.
Selective reduction of carbon dioxide to bis(silyl)acetal catalyzed by
a PBP-supported nickel complex. Chem. Commun. 2016, 52, 2114-
2117.
15. (a) Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. Catalytic CO2
Activation Assisted by Rhenium Hydride/B(C6F5)3 Frustrated Lewis
Pairs—Metal Hydrides Functioning as FLP Bases. J. Am. Chem.
Soc. 2013, 135, 7751-7760. (b) LeBlanc, F. A.; Piers, W. E.;
Parvez, M. Selective Hydrosilation of CO2 to a Bis(silylacetal) Using
an Anilido Bipyridyl-Ligated Organoscandium Catalyst. Angew.
Chem. Int. Ed. 2014, 53, 789-792.
dioxide with hydrogen. BASF SE, Germany, WO2013050367A2,
2013. (l) Filonenko, G. A.; Hensen, E. J. M.; Pidko, E. A.
Mechanism of CO2 hydrogenation to formates by homogeneous
1
2
3
4
5
6
7
8
Ru-PNP pincer catalyst: from
a
theoretical description to
performance optimization. Catal. Sci. Technol. 2014, 4, 3474-3485.
(m) Jeletic, M. S.; Helm, M. L.; Hulley, E. B.; Mock, M. T.; Appel, A.
M.; Linehan, J. C. A Cobalt Hydride Catalyst for the Hydrogenation
of CO2: Pathways for Catalysis and Deactivation. ACS Catal. 2014,
4, 3755-3762. (n) Moret, S.; Dyson, P. J.; Laurenczy, G. Direct
synthesis of formic acid from carbon dioxide by hydrogenation in
acidic media. Nat. Commun. 2014, 5, 4017.
7. (a) Kröcher, O.; A. Köppel, R.; Baiker, A. Highly active ruthenium
complexes with bidentate phosphine ligands for the solvent-free
catalytic synthesis of N,N-dimethylformamide and methyl formate.
Chem. Commun. 1997, 453-454. (b) Ziebart, C.; Federsel, C.;
Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.;
Beller, M. Well-Defined Iron Catalyst for Improved Hydrogenation of
Carbon Dioxide and Bicarbonate. J. Am. Chem. Soc. 2012, 134,
20701-20704. (c) Pazicky, M.; Schaub, T.; Paciello, R.; Altenhoff,
A. G.; Fries, D. M. Verfahren zur Herstellung von Methylformiat.
BASF SE, Germany, DE102012014159A1, 2013.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
16. Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.;
Klankermayer,
J.
Ruthenium-Catalyzed
Synthesis
of
Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular
Hydrogen. Angew. Chem. Int. Ed. 2016, 55, 12266-12269.
17. Schieweck, B. G.; Klankermayer, J. Tailor-made Molecular
Cobalt Catalyst System for the Selective Transformation of Carbon
Dioxide to Dialkoxymethane Ethers. Angew. Chem. Int. Ed. 2017,
56, 10854-10857.
8. (a) Pazicky, M.; Schaub, T.; Paciello, R.; Lissner, A. Verfahren
zur Herstellung von Formamidverbindungen. BASF SE, Germany,
DE102012019441A1, 2013. (b) Zhang, L.; Han, Z.; Zhao, X.; Wang,
Z.; Ding, K. Highly Efficient Ruthenium-Catalyzed N-Formylation of
Amines with H2 and CO2. Angew. Chem. Int. Ed. 2015, 54, 6186-
6189.
9. (a) Huff, C. A.; Sanford, M. S. Cascade Catalysis for the
Homogeneous Hydrogenation of CO2 to Methanol. J. Am. Chem.
Soc. 2011, 133, 18122-18125. (b) Han, Z.; Rong, L.; Wu, J.; Zhang,
L.; Wang, Z.; Ding, K. Catalytic Hydrogenation of Cyclic
Carbonates: A Practical Approach from CO2 and Epoxides to
Methanol and Diols. Angew. Chem. Int. Ed. 2012, 51, 13041-
13045. (c) Wesselbaum, S.; vomꢁStein, T.; Klankermayer, J.;
Leitner, W. Hydrogenation of Carbon Dioxide to Methanol by Using
a Homogeneous Ruthenium–Phosphine Catalyst. Angew. Chem.
Int. Ed. 2012, 51, 7499-7502. (d) Klankermayer, J.; Leitner, W.;
vom Stein, T.; Wesselbaum, S. Reduction method for the reduction
18. (a) Phanopoulos, A.; Brown, N. J.; White, A. J. P.; Long, N. J.;
Miller, P. W. Synthesis, Characterization, and Reactivity of
Ruthenium Hydride Complexes of N-Centered Triphosphine
Ligands. Inorg. Chem. 2014, 53, 3742-3752. (b) Phanopoulos, A.;
Miller, P. W.; Long, N. J. Beyond Triphos – New hinges for a
classical chelating ligand. Coord. Chem. Rev. 2015, 299, 39-60. (c)
Phanopoulos, A.; White, A. J. P.; Long, N. J.; Miller, P. W. Catalytic
Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using
Ruthenium–N-Triphos Complexes. ACS Catal. 2015, 5, 2500-2512.
19. LloretꢁFillol, J.; Kruckenberg, A.; Scherl, P.; Wadepohl, H.;
Gade, L. H. Stitching Phospholanes Together Piece by Piece: New
Modular Di- and Tridentate Stereodirecting Ligands. Chem. Eur. J.
2011, 17, 14047-14062.
20. (a) Epstein, M.; Buckler, S. A. A Novel Phosphorus Heterocyclic
System from the Reactions of Phosphine and Primary Phosphines
with 2,4-Pentanedione. J. Am. Chem. Soc. 1961, 83, 3279-3282.
(b) Fawcett, J.; Hoye, P. A. T.; Kemmitt, R. D. W.; Law, D. J.;
Russell, D. R. Synthesis of bis(phosphinomethyl)amines via
of
carbon
dioxide
and
carbon
dioxide
derivatives.
RWTH Aachen University, Germany, WO2013156496A1, 2013. (e)
Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. Combining Low-
Pressure CO2 Capture and Hydrogenation To Form Methanol. ACS
Catal. 2015, 5, 2416-2422. (f) Rezayee, N. M.; Huff, C. A.; Sanford,
M. S. Tandem Amine and Ruthenium-Catalyzed Hydrogenation of
CO2 to Methanol. J. Am. Chem. Soc. 2015, 137, 1028-1031. (g)
Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert,
K. M.; Kothe, J.; vom Stein, T.; Englert, U.; Hölscher, M.;
Klankermayer, J.; Leitner, W. Hydrogenation of carbon dioxide to
methanol using a homogeneous ruthenium–Triphos catalyst: from
mechanistic investigations to multiphase catalysis. Chem. Sci.
2015, 6, 693-704. (h) Kothandaraman, J.; Goeppert, A.; Czaun, M.;
Olah, G. A.; Prakash, G. K. S. Conversion of CO2 from Air into
Methanol Using a Polyamine and a Homogeneous Ruthenium
Catalyst. J. Am. Chem. Soc. 2016, 138, 778-781. (i) Schneidewind,
J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M. Low-
Temperature Hydrogenation of Carbon Dioxide to Methanol with a
Homogeneous Cobalt Catalyst. Angew. Chem. Int. Ed. 2017, 56,
1890-1893.
10. Bontemps, S.; Vendier, L.; Sabo-Etienne, S. Borane-Mediated
Carbon Dioxide Reduction at Ruthenium: Formation of C1 and C2
Compounds. Angew. Chem. Int. Ed. 2012, 51, 1671-1674.
11. Bontemps, S.; Vendier, L.; Sabo-Etienne, S. Ruthenium-
Catalyzed Reduction of Carbon Dioxide to Formaldehyde. J. Am.
Chem. Soc. 2014, 136, 4419-4425.
12. (a) Jin, G.; Werncke, C. G.; Escudié, Y.; Sabo-Etienne, S.;
Bontemps, S. Iron-Catalyzed Reduction of CO2 into Methylene:
Formation of C–N, C–O, and C–C Bonds. J. Am. Chem. Soc. 2015,
137, 9563-9566. (b) Aloisi, A.; Berthet, J.-C.; Genre, C.; Thuéry, P.;
Cantat, T. Complexes of the tripodal phosphine ligands
PhSi(XPPh2)3 (X = CH2, O): synthesis, structure and catalytic
activity in the hydroboration of CO2. Dalton Trans. 2016, 45, 14774-
14788.
bis(hydroxymethyl)phosphonium
salts.
Isolation
of
9,9-
bis(hydroxymethyl)-9-phosphoniabicyclo[3.3.1]nonane
hydrogensulfate and chloride salts, and the crystal structures of
[PPh2(CH2OH)2]+Cl– and [(C6H11)2PCH2]2NCHMePh. J. Chem. Soc.,
Dalton Trans. 1993, 2563-2568.
21. Doherty, S.; Robins, E. G.; Nieuwenhuyzen, M.; Champkin, P.
A.; Clegg, W. Palladium Complexes of 2-Pyridin-2-yl Substituted
1,3-Bis(diphenylphosphino)propane:ꢀ Highly Active Catalysts for the
Room-Temperature Copolymerization of Carbon Monoxide with
Ethene. Organometallics 2002, 21, 4147-4158.
22. Dulière, E.; Devillers, M.; Marchand-Brynaert, J. Novel
Phosphinite−Ruthenium(II) Complexes Covalently Bound on Silica:
Synthesis, Characterization, and Catalytic Behavior versus
Oxidation Reactions of Alcohols into Aldehydes. Organometallics
2003, 22, 804-811.
23. vomꢁStein, T.; Weigand, T.; Merkens, C.; Klankermayer, J.;
Leitner,
W.
Trimethylenemethane-Ruthenium(II)-Triphos
Complexes as Highly Active Catalysts for Catalytic C–O Bond
Cleavage Reactions of Lignin Model Compounds. ChemCatChem
2013, 5, 439-441.
24. (a) Long, F. A.; McIntyre, D. Acid-catalyzed Hydrolysis of
Methylal. II. Kinetic and Equilibrium Salt Effects and Correlation
with H0. J. Am. Chem. Soc. 1954, 76, 3243-3247. (b) McIntyre, D.;
Long, F. A. Acid-catalyzed Hydrolysis of Methylal. I. Influence of
Strong Acids and Correlation with Hammett Acidity Function. J. Am.
Chem. Soc. 1954, 76, 3240-3242.
25. Deutz, S.; Bongartz, D.; Heuser, B.; Kätelhön, A.; Schulze
Langenhorst, L.; Omari, A.; Walters, M.; Klankermayer, J.; Leitner,
W.; Mitsos, A.; Pischinger, S.; Bardow, A. Cleaner production of
cleaner fuels: wind-to-wheel – environmental assessment of CO2-
based oxymethylene ether as a drop-in fuel. Energy Environ. Sci.
2018, 11, 331-343.
ACS Paragon Plus Environment