(trifluoromethoxy)-, and 4-fluoro-substituted aryne precursors
1b–1i afforded the desired products in 35–82% yields (entries 1–
8). For unsymmetrical arynes (entries 4–8), the product ratios of
meta- and para-position ranged from 2.3/1 to 1/2.3, which
suggested that these reactions involved an aryne mechanism.
Similarly, aryne precursor 1j for 1,2-didehydronaphthalene also
gave two isomers (α/β = 1/2.6) in good yield (entry 9).
of aryl carboxylates. This property of arynes should lead to new
and useful applications in organic synthesis. Further
investigations on the insertion of arynes into other σ-bonds are
ongoing and will be reported in due course.
Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Project No. 21242002) and 100 Young
Talents Programme of Guangdong University of Technology
(Project No. 220413506).
Table 3
O-arylation of butyric acid with arynesa
Supplementary data
Supplementary data (these data include experimental details,
1
analytical data, H and 13C NMR spectra of all new compounds,
and 19F NMR spectrum of compounds 3hc and 3ic) associated
with this article can be found, in the online version, at http://...
References and notes
1.
(a) Ogliaruso, M. A.; Wolfe, J. F. The Chemistry of Carboxylic Acids
and Esters; Patai, S., Ed.; Interscience: London, 1991; (b) Evans, D. A.;
DeVries, K. M. In Glycopeptide Antibiotics, Drugs and the
Pharmaceutical Sciences; Nagarajan, R., Ed.; Marcel Decker, Inc.: New
York, 1994; Vol. 63, pp 63104; (c) Katritzky, A. R.; Meth-Cohn, C. O.;
Charles, W. R. Comprehensive Organic Functional Group
Transformations; Vol. 5, Cambridge University Press: Cambridge, 1995;
(d) Green, T. W.; Wuts, P. G. M. Protective Groups in Organic
Synthesis; 3rd ed.; John Wiley and Sons: New York, 1999; (e) Larock,
R. C. Comprehensive Organic Transformations: A Guide to Functional
Group Preparations, 2nd ed.; John Wiley & Sons: New York, 1999; (f)
Bauer, K.; Garbe, D.; Sturburg, H. Common Fragrance and Flavor
Materials: Preparation and Uses; 4th ed.; Wiley-VCH: Weinheim,
2001; (g) Otera, J. Esterification: Methods, Reactions and Applications;
Wiley VCH: Weinheim, 2003.
2.
3.
Beyer, H.; Walter, W. Handbook of Organic Chemistry; Prentice Hall
Europe: London, 1996; p 497.
For recent reviews, see: (a) , E. Angew.
Chem., Int. Ed. 2006, 45, 35793581; (b) Yoshida, H.; Ohshita, J.;
Kunai, A. Bull. Chem. Soc. Jpn. 2010, 83, 199219; (c) Bhojgude, S. S.;
Biju, A. T. Angew. Chem., Int. Ed. 2012, 51, 15201522; (d) Yoshida,
H.; Takaki, K. Synlett 2012, 23, 17251732; (e) Gampe, C. M.; Carreira,
E. M. Angew. Chem. 2012, 124, 38293842; Angew. Chem., Int. Ed.
2012, 51, 37663778; (f) Tadross, P. M.; Stoltz, B. M. Chem. Rev.
2012, 112, 35503577; (g) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem.
Soc. Rev. 2012, 41, 31403152; (h) Wu, C.; Shi, F. Asian J. Org. Chem.
2013, 2, 116125; (i) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C.
Org. Biomol. Chem. 2013, 11, 191218; (j) Hoffmann, R. W.; Suzuki,
K. Angew. Chem. 2013, 125, 27172718; Angew. Chem., Int. Ed. 2013,
52, 26552656; (k) , D.; , E. Eur. J. Org. Chem.
2013, 27, 59816013; (l) Holden, C.; Greaney, M. F. Angew. Chem., Int.
Ed. 2014, 53, 57465749.
4.
For recent examples, see: (a) Pirali, T.; Zhang, F.; Miller, A. H.; Head,
J. L.; McAusland, D.; Greaney, M. F. Angew. Chem. 2012, 124, 1030–
1033. Angew. Chem., Int. Ed. 2012, 51, 1006–1009; (b) Hamura, T.;
Chuda, Y.; Nakatsuji, Y.; Suzuki, K. Angew. Chem., Int. Ed. 2012, 51,
33683372; (c) Chakrabarty, S.; Chatterjee, I.; Tebben, L.; Studer, A.
Angew. Chem., Int. Ed. 2013, 52, 29682971; (d) Li, R.; Wang, X.;
Wei, Z.; Wu, C.; Shi, F. Org. Lett. 2013, 15, 43664369; (e) Wang, Y.;
Yepremyan, A.; Ghorai, S.; Todd, R.; Aue, D. H.; Zhang, L. Angew.
Chem. 2013, 125, 79497953; (f) Rao, B.; Zeng, X. Org. Lett. 2014, 16,
314317; (g) Zhou, Y.; Chi, Y.; Zhao, Fei.; Zhang, W.-X.; Xi, Z. Chem.
Eur. J. 2014, 20, 24632468; (h) Dong, Y.; Liu, B.; Chen, P.; Liu, Q.;
Wang, M.; Angew. Chem., Int. Ed. 2014, 53, 34423446; (i) Peng, X.;
Wang, W.; Jiang, C.; Sun, D.; Xu, Z.; Tung, C.-H. Org. Lett. 2014, 16,
53545357; (j) Zeng, Y.; Hu, J. Chem. Eur. J. 2014, 20, 68666870; (k)
Schuler, B.; Collazos, S.; Gross, L.; Meyer, G.; Pérez, D.; Guitián, E.;
Peña, D. Angew. Chem. 2014, 126, 91509152; (l) Siyang, H. X.; Wu,
X. R.; Liu, H. L.; Wu, X. Y.; Liu, P. N. J. Org. Chem. 2014, 79,
15051510; (m) Thangaraj, M.; Bhojgude, S. S.; Bisht, R. H.; Gonnade,
R. G.; Biju, A. T. J. Org. Chem. 2014, 79, 47574762; (n) Pian, J.-X.;
He, L.; Du, G.-F.; Guo, H.; Dai, B. J. Org. Chem. 2014, 79, 58205826;
a All reactions were carried out with 1 (0.68 mmol), 2c (3.4 mmol), NaOH
(2.0 mmol) and CsF (2.7 mmol) in CH3CN (4.0 mL) at 80 oC for 4 h.
b Isolated yield based on 1.
c Ratio was determined by 1H NMR analysis of crude products.
d See the supplementary data for the structures of two isomers.
In summary, we have developed an efficient O-arylation of
aliphatic carboxylic acids through the insertion of arynes into the
O–H bond promoted by sodium carboxylates under mild
conditions, which provides a facile methodology for the synthesis