COMMUNICATIONS
111, 3576; Angew. Chem. Int. Ed. 1999, 38, 3365; f) D.H.Camacho, I.
Nakamura, S.Saito, Y.Yamamoto, J. Org. Chem. 2001, 66, 270.
Monodisperse Surface Micelles of Nonpolar
Amphiphiles in Langmuir Monolayers**
[4] a) T.Mitsudo, Y.Hori, Y.Yamakawa, Y.Watanabe,
J. Org. Chem.
1987, 52, 2230; b) DM. T. .Chan, TB. .Marder, D.Milstein, N.J,
Taylor, J. Am. Chem. Soc. 1987, 109, 6385; c) B.M.Trost, W.Brieden,
K.H.Baringhaus, Angew. Chem. 1992, 104, 1392; Angew. Chem. Int.
Ed. Engl. 1992, 31, 1335; d) H.Doucet, B.Martin-Vaca, C.Bruneau,
P.H. Dixneuf, J. Org. Chem. 1995, 60, 7247; e) M.Al-Masum, Y.
Yamamoto, J. Am. Chem. Soc. 1998, 120, 3809.
Mounir Maaloum, Pierre Muller, and
Marie Pierre Krafft*
There are several examples of surface micelles (hemi-
micelles) formed by self-assembly of small molecules and
macromolecules that are adsorbed on solid surfaces and in
equilibrium with aqueous solutions.[1] On the other hand,
reports on surface micelles in Langmuir monolayers are
essentially limited to copolymers.[2] Although their existence
has long been predicted,[3,4] so far only one example of surface
micelles made from small amphiphilic molecules exists.[5]
These surface micelles were made from strongly polar
surfactants.Furthermore no rule for predicting the size of
the hemimicelles has been found.We report here on novel
surface micelles made of a nonpolar amphiphile, namely, the
semifluorinated alkane C8F17C16H33 (F8H16), their structure,
and a model that accounts for their size.
Since the pioneering work of Gaines demonstrated that
semifluorinated alkanes CnFnþ1CmH2mþ1 (FnHm diblocks)
form Langmuir monolayers,[6] their structure has remained
controversial.A primary issue was the orientation of the
FnHm molecules at the air water interface.Grazing-inci-
dence X-ray diffraction (GIXD) and X-ray reflectivity
(GIXR) studies on F12H18 concluded that the most probable
arrangement was a monolayer in which the Hm segments are
in contact with water and the Fn segments extend upwards
from the surface.[7] However, a bilayer structure in which the
diblocks are antiparallel, with tilted F8 segments outside and
interleaved H18 segments inside, was recently proposed on
the basis of X-ray reflectivity measurements.[8] In the bulk,
FnHm molecules crystallize in a large number of different
[5] Review: a) T.Kondo, T.Mitsudo, Chem. Rev. 2000, 100, 3205; for
hydrothiolation of alkynes, b) A.Ogawa, T.Ikeda, K.Kimura, T.
Hirao, J. Am. Chem. Soc. 1999, 121, 5108.
À
[6] Addition of P H bonds to alkynes: a) L.-B. Han, R. Hua, M. Tanaka,
Angew. Chem. 1998, 110, 98; Angew. Chem. Int. Ed. 1998, 37, 94;
b) M.A.Kazankova, I.V.Efimova, A.N.Kochetkov, V.V.Afanas
’ev,
I.P.Beletskaya, P.H.Dixneuf, Synlett 2001, 497.
[7] Review: a) I.Beletskaya, A.Pelter,
Tetrahedron 1997, 53, 4957;
b) ™Metal-catalyzed Hydroboration Reactions∫: G.C.Fu in Transition
Metals for OrganicSynthesis (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, 1998, pp.141 146.
[8] Review: a) K.A. Horn, Chem. Rev. 1995, 95, 1317; b) ™Hydrosilyl-
ation of Olefins∫: K.Yamamoto, T.Hayashi in Transition Metals for
OrganicSynthesis (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim,
1998, pp.120 129.
[9] Review: N.D.Smith, J.Mancuso, M.Lautens,
3257.
Chem. Rev. 2000, 100,
[10] Diboration of alkynes: a) T.Ishiyama, N.Matsuda, N.Miyaura, A.
Suzuki, J. Am. Chem. Soc. 1993, 115, 11018; b) T.Ishiyama, N.
Matsuda, M.Murata, F.Ozawa, A.Suzuki, N.Miyaura,
metallics 1996, 15, 713; c) G.Lesley, P.Nguyen, N.J.Taylor, T.B.
Marder, A.J.Scott, W.Clegg, N.C.Norman, Organometallics 1996,
Organo-
15, 5137; d) C.N.Iverson, M.R.Smith III, Organometallics 1996, 15,
5155.
[11] Review: M.Suginome, Y.Ito, Chem. Rev. 2000, 100, 3221.
[12] Silaboration of alkynes, a) M.Suginome, H.Nakamura, Y.Ito, Chem.
Commun. 1996, 2777; b) M.Suginome, T.Matsuda, H.Nakamura, Y.
Ito, Tetrahedron 1999, 55, 8787.
[13] Disilylation of alkynes: a) H.Sakurai, Y.Kamiyama, Y.Nakadaira, J.
Am. Chem. Soc. 1975, 97, 931; b) F.Ozawa, M.Sugawara, T.Hayashi,
Organometallics 1994, 13, 3237.
[14] Silastannylation of alkynes: M.Hada, Y.Tanaka, M.Ito, M.
Murakami, H.Amii, Y.Ito, H.Nakatsuji,
J. Am. Chem. Soc. 1994,
stable smectic phases, depending on temperature and on n and
116, 8754.
11]
m block lengths.[9
FnHm were instrumental in allowing
[15] E.Piers, R.T.Skerlj, J. Chem. Soc. Chem. Commun. 1986, 626.
[16] a) H.Nakamura, M.Sekido, M.Ito, Y.Yamamoto, J. Am. Chem. Soc.
1998, 120, 6838; b) N.Moneiro, G.Balme, Synlett 1998, 746; c) A.
F¸rstner, H.Szillat, F.Stelzer, J. Am. Chem. Soc. 2000, 122, 6785.
[17] Catalytic skeletal rearrangement: a) T.J.Katz, T.M.Sivavec, J. Am.
Chem. Soc. 1985, 107, 737; b) A.Kinoshita, M.Mori, Synlett 1994,
1020; c) B.M.Trost, G.J.Tanoury, J. Am. Chem. Soc. 1988, 110, 1636;
d) B.M.Trost, M.K.Trost, J. Am. Chem. Soc. 1991, 113, 1850; e) B.M.
Trost, A.S.K.Hashmi, Angew. Chem. 1993, 105, 1130; Angew. Chem.
Int. Ed. 1993, 32, 1085; f) N.Chatani, T.Morimoto, T.Muto, S.Murai,
J. Am. Chem. Soc. 1994, 116, 6049; g) N.Chatani, N.Furukawa, H.
Sakurai, S.Murai, Organometallics 1996, 15, 901; h) N.Chatani, K.
Kataoka, S.Murai, N.Furukawa, Y.Seki, J. Am. Chem. Soc. 1998, 120,
9104; i) ref.[16c].
reversible vertical phase separation from phospholipids upon
compression of Langmuir monolayers.[12] They allowed sub-
stantial stabilization of fluorocarbon-in-water emulsions and
control over particle size.[13,14]
F8H16[15] was thoroughly purified by column chromatog-
raphy, and its purity (> 99%) determined by GC, TLC, NMR
spectroscopy, and elemental analysis.Monolayers were
spread from a 1 mm solution of F8H16 in chloroform onto
pure water from a milli-Q system.Surface pressure Ps
(Wilhelmy plate method) versus molecular area isotherms
were recorded at 22.0 Æ 0.58C on a Langmuir trough (Riegler
& Kirstein, Germany) equipped with two movable barriers.
F8H16 formed a monolayer that remained stable up to
about 8 mNmÀ1 (Figure 1) with a limiting area of about 30 ä2
that corresponds to the cross section of a perfluorinated chain,
which is larger than that of a typical hydrocarbon chain (ca.
[18] a) W.A.Herrmann, C.-P.Reisinger, M.Spiegler, J. Organomet. Chem.
1998, 557, 93; b) K.L. Greenman, D.S. Carter, D.L. Van Vranken,
Tetrahedron 2001, 57, 5219; c) K.Miki, F.Nishino, K.Ohe, U.Sakae, J.
Am. Chem. Soc. 2002, 124, 5260.
[19] B.H.Lipshutz, D.Pollart, J.Monforte, H.Kotsuki,
Tetrahedron Lett.
1985, 26, 705.
[20] T.Soga, H.Takenoshita, M.Yamada, T.Mukaiyama, Bull. Chem. Soc.
Jpn. 1990, 63, 3122.
[*] Dr.M.P.Krafft, Dr.M.Maaloum, Dr.P.Muller
Institut Charles Sadron (CNRS)
[21] a) T.Kumamoto, N.Tabe, K.Yamaguchi, H.Yagishita, H.Iwasa, T.
Ishikawa, Tetrahedron 2001, 57, 2717; b) V.M.Marathias, P.H.Bolton,
Biochemistry 1999, 38, 4355; c) W.M.Clark, A.M.Ticker-Eldridge,
G.Kris Huang, L.N.Pridgen, M.A.Olsen, R.J.Mills, I.Lantos, N.H.
Baine, J. Am. Chem. Soc. 1998, 120, 4550.
6, rue Boussingault, 67083 Strasbourg Cedex (France)
Fax : (þ 33)3-88-41-4099
E-mail: krafft@ics.u-strasbg.fr
[**] This work was supported by the CNRS.We thank AtoFina (Pierre-
Bÿnite, France) for the gift of fluorinated precursors.
Angew. Chem. Int. Ed. 2002, 41, No.22
¹ 2002 WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim
0044-8249/02/4122-4331 $ 200. 0+5. 0/0
4331