4
Tetrahedron
·-
2. (a) Zhang, M.; Sun, D. Anticancer Agents Med. Chem. 2015, 15, 537-
547; (b) Kumar, S.; Singh, A.; Kumar, K.; Kumar, V. Eur. J. Med.
Chem. 2017, 142, 48-73.
bond by O2 , to afford a stable intermediate I. On the other
·-
hand, hydrogen abstraction of A by previously formed O2 gives
a radical anion C, that is readily oxidized by air (O2) to afford the
key intermediate I. The structure of I was confirmed by 1H NMR
and MS (see the supporting information for details). Additionally,
oxidative decarboxylation of substrate 3a could be easily
achieved in the DBN/air (O2) reaction system, and lead to the
formation of radical D, which would give an unstable
3. (a) Ashok, P.; Chander, S.; Tejería, A.; García-Calvo, L.; Balaña-Fouce,
R.; Murugesan, S. Eur. J. Med. Chem. 2016, 123, 814-821; (b) Costa, E.
V.; Pinheiro, M. L.; Xavier, C. M.; Silva, J. R.; Amaral, A. C.; Souza,
A. D.; Barison, A.; Campos, F. R.; Ferreira, A. G.; Machado, G. M.;
Leon, L. L. J. Nat. Prod. 2006, 69, 292-294.
4. (a) Dai, J.; Dan, W.; Li, N.; Wang, J. Eur. J. Med. Chem. 2018, 157,
333-338; (b) Suzuki, K.; Nomura, I.; Ninomiya, M.; Tanaka, K.;
Koketsu, M. Bioorg. Med. Chem. Lett. 2018, 28, 2976-2978.
5. (a) Chen, D.; Su, A.; Fu, Y.; Wang, X.; Lv, X.; Xu, W.; Xu, S.; Wang,
H.; Wu, Z. Antiviral. Res. 2015, 123, 27-38; (b) Nazari Formagio, A. S.;
Santos, P. R.; Zanoli, K.; Ueda-Nakamura, T.; Düsman Tonin, L. T.;
Nakamura, C. V.; Sarragiotto, M. H. Eur. J. Med. Chem. 2009, 44,
4695-4701.
·-
intermediate II after further oxidation by O2 . Finally,
intermediates I and II could go through a double-bond
isomerization process (from I, II to III), followed by oxidative
dehydrogenation again in the DBN/air (O2) reaction system, to
yield the desired product 2a (4a).
6. Otto, R.; Penzis, R.; Gaube, F.; Winckler, T.; Appenroth, D.; Fleck, C.;
Tränkle, C.; Lehmann, J.; Enzensperger, C. Eur. J. Med. Chem. 2014,
87, 63-70.
7. (a) Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V. J.;
Guillén, H. Food Chem. Toxicol. 2010, 48, 839-845; (b) Reniers, J.;
Robert, S.; Frederick, R.; Masereel, B.; Vincent, S.; Wouters, J. Bioorg.
Med. Chem. 2011, 19, 134-144.
8. (a) Love, B. E. Org. Prep. Proced. Int. 1996, 28, 1-64; (b) Milen, M.;
Ábrányi-Balogh, P. Chem. Heterocycl. Comp. 2016, 52, 996-998.
9. Zhang, G.; Cao, R.; Guo, L.; Ma, Q.; Fan, W.; Chen, X.; Li, J.; Shao, G.;
Qiu, L.; Ren, Z. Eur. J. Med. Chem. 2013, 65, 21-31.
10. Xin, B.; Tang, W.; Wang, Y.; Lin, G.; Liu, H.; Jiao, Y.; Zhu, Y.; Yuan,
H.; Chen, Y.; Lu, T. Bioorg. Med. Chem. Lett. 2012, 22, 4783-4786.
11. Huang, W.; Li, J.; Ou, L. Synthetic Commun. 2007, 37, 2137-2143.
12. Meesala, R.; Mordi, M. N.; Mansor, S. M. Synlett. 2014, 25, 120-122.
13. Kamal, A.; Sathish, M.; Prasanthi, A. V. G.; Chetna, J.; Tangella, Y.;
Srinivasulu, V.; Shankaraiahb, N.; Alarifi, A. RSC Adv. 2015, 5, 90121-
90126.
14. Meesala, R.; Arshad, A. S. M.; Mordi, M. N.; Mansor, S. M.
Tetrahedron 2016, 72, 8537-8541.
15. Ling, Y.; Xu, C.; Luo, L.; Cao, J.; Feng, J.; Xue, Y.; Zhu, Q.; Ju, C.; Li,
F.; Zhang, Y.; Zhang, Y.; Ling, X. J. Med. Chem. 2015, 58, 9214-9227.
16. (a) Yin, W.; Majumder, S.; Clayton, T.; Petrou, S.; VanLinn, M. L.;
Namjoshi, O. A.; Ma, C.; Cromer, B. A.; Roth, B. L.; Platt, D. M.;
Cook, J. M. Bioorg. Med. Chem. 2010, 18, 7548-7564; (b) Dantale, S.
B. B.; Soderberg, B. C. G. Tetrahedron 2003, 59, 5507-5514.
17. (a) Rinehart, Jr. K. L.; Kobayashi, J.; Harbour, G. C.; Gilmore, J.;
Mascal, M.; Holt, T. G.; Shield, L. S.; Lafargue, F. J. Am. Chem. Soc.
1987, 109, 3378-3387; (b) Schott, Y.; Decker, M.; Rommelspacher, H.;
Lehmann, J. Bioorg. Med. Chem. Lett. 2006, 16, 5840-5843.
18. Lippke, K. P.; Schunack, W. G.; Wenning, W.; Müller, W. E. J. Med.
Chem. 1983, 26, 499-503.
19. Kamal, A.; Srinivasulu, V.; Nayak, V. L.; Sathish, M.; Shankaraiah, N.;
Bagul, C.; Reddy, N. V.; Rangaraj, N.; Nagesh, N. Chem. Med. Chem.
2014, 9, 2084-2098.
20. Panarese, J. D.; Waters, S. P. Org Lett. 2010, 12, 4086-4089.
21. Kamal, A.; Tangella, Y.; Manasa, K. L.; Sathish, M.; Srinivasulu, V.;
Chetna, J.; Alarifi, A. Org. Biomol. Chem. 2015, 13, 8652-8662.
22. Bai, B.; Li, X. Y.; Liu, L.; Li, Y.; Zhu, H. J. Bioorg. Med. Chem. Lett.
2014, 24, 96-98.
Scheme 3. Plausible reaction mechanism.
In conclusion, we have developed a highly efficient protocol for
the
synthesis
of
β-carbolines
via
DBN-promoted
dehydrogenative/decarboxylative aromatization of tetrahydro-β-
carboline precursors under air. The method possessed the advantages
of being metal-free, operational simplicity and broad substrate scope,
which could serve as a milder alternative to the traditional methods.
Additionally, the utility of the process was highlighted in the gram-
scale synthesis of β-carboline alkaloids such as eudistomin U (7) and
harmane (10). Further utilizations of this protocol are underway to
construct more complex β-carbolines in our laboratory.
Acknowledgments
23. Ikeda, R.; Kimura, T.; Tsutsumi, T.; Tamura, S.; Sakai, N.; Konakahara,
T. Bioorg. Med. Chem. Lett. 2012, 22, 3506-3515.
24. Hati, S.; Sen, S. Tetrahedron Lett. 2016, 57, 1040-1043.
25. (a) Dong, J.; Shi, X. X.; Yan, J. J.; Xing, J.; Zhang, Q.; Xiao, S. Eur. J.
Org. Chem. 2010, 36, 6987-6992; (b) Huang, Y. Q.; Song, H. J.; Liu, Y.
X.; Wang, Q. M. Chem. Eur. J. 2018, 24, 2065-2069.
This work was supported by the National Natural Science
Foundation of China (Grant No. 81602957), the Natural Science
Foundation of Jiangsu Province, China (Grant No.
BK20161035), and the China Postdoctoral Science Foundation
(Grant No. 2016M601853).
26. Verniest, G.; England, D.; De Kimpe, N.; Padwa, A. Tetrahedron 2010,
66, 1496-1502.
Supplementary data
27. Ding, S.; Shi, Z.; Jiao, N. Org. Lett. 2010, 12, 1540-1543.
28. (a) Kobayashi, A.; Endo, Y.; Shiraishi, A.; Yamashita, T. J.
Photopolym. Sci. Technol. 2018, 31, 107-112; (b) Spangler, C. W.;
Eichen, R.; Silver, K.; Butzlaff, B. J. Org. Chem. 1971, 36, 1695-1697;
(c) Clark, J.; Perrin. D. D. Q. Rev. Chem. Soc. 1964, 18, 295-320.
29. (a) Funayama, Y.; Nishio, K.; Wakabayashi, K.; Nagao, M.; Shimoi, K.;
Ohira, T.; Hasegawa, S.; Saijo, N. Mutat Res. 1996, 349, 183-191; (b)
Roggero, C. M.; Giulietti, J. M.; Mulcahy, S. P. Bioorg. Med. Chem.
Lett. 2014, 24, 3549-3551; (c) Giuliettia, J. M.; Tate, P. M.; Cai, A.;
Cho, B.; Mulcahy, S. P. Bioorg. Med. Chem. Lett. 2016, 26, 4705-4708.
30. Wendlandt, A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 506-512.
31. Li, C.; Zhang, X.; Zhao, M.; Wang, Y.; Wu, J.; Liu, J.; Zheng, M.;
Peng, S. Eur. J. Med. Chem. 2011, 46, 5598-5608.
Supplementary data associated with this article can be found
online at
References
1. (a) Dai, J.; Dan, W.; Schneider, U.; Wang, J. Eur. J. Med. Chem. 2018,
157, 622-656; (b) Dos Santos, R. G.; Hallak, J. E. J. Psychoactive
Drugs 2017, 49, 1-10; (c) Kumar, S.; Singh, A.; Kumar, K.; Kumar, V.
Eur. J. Med. Chem. 2017, 142, 48-73; (d) Khan, H.; Patel, S.; Kamal,
M. A. Curr. Drug Metab. 2017, 18, 853-857.
32. (a) Hokamp, T.; Dewanji, A.; Lgbbesmeyer, M.; Mgck-Lichtenfeld, C.;
Wgrthwein, E.; Studer, A. Angew. Chem. Int. Ed. 2017, 56, 13275-