NHC-Catalysed Mukaiyama–Michael Reaction
E
OTMS
O
10 mol-% B1–E1·HBF4,
10 mol-% KHMDS,
THF, 0ꢁC, 4 h
p-BrC6H4
9b
p-BrC6H4
O
O
ꢀ
(9)
Ph
Ph
Ph
Ph
6a
7ab
Catalysts
CH3
CH3
Bn
O
O
Ph
Ph
N
N
Bn
N
N
N
N
N
N
N
N
N
N
R1
t-Bu
R1
B1, R1 ꢄ t-Bu
t-Bu
D1, R1 ꢄ t-Bu
C1, 24 % yield, 0 % ee
E1, 41 % yield, 0 % ee
49 % yield, 0 % ee
B2, R1 ꢄ C6F5,
no reaction
40 % yield, 0 % ee
D2, R1 ꢄ p-MeOC6H4,
8 % yield, 0 % ee
Scheme 2. Studies on enantioselectivity.
striking, with the only differences in reaction conditions relat-
ing to the method of NHC generation (preformed or via in situ
deprotonation). This highlights the non-innocent effects of the
salt by-products formed upon NHC generation – something we,
and others, have documented.[15] Studies on the enantioselective
variant of this reaction could not expand the utility of the
reaction.
For cascade catalysis see: (e) A. Grossmann, D. Enders, Angew. Chem.,
(f) X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511. doi:10.1039/
(g) J. Izquierdo, G. E. Hutson, D. T. Cohen, K. A. Scheidt,
(h) S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc. Rev. 2013, 42,
A few observations can be made about the competition
between NHC-mediated desilylation and NHC-mediated
defluorination–desilylation as we have previously reported.[9]
First, the former reaction appears to only proceed in a useful
fashion at room temperature or above, whereas our previously
reported chemistry is viable at low temperatures in several
cases.[9] Second, while the former chemistry shows high sensi-
tivity to the nature of the N-substituent (i.e. Table 1, entries
11–13 cf. 14), the latter chemistry can be achieved with various
types of NHC. Thus, the two pathways for silyl enol ether
reactivity are likely to be easily selected for, based on catalyst
selection and other reaction conditions.
(i) S. De Sarkar, A. Biswap, R. C. Samanta, A. Studer, Chem. Eur. J.
(j) J. Mahatthananchai, J. W. Bode, Acc. Chem. Res. 2014, 47, 696.
(k) P. Chauhan, D. Enders, Angew. Chem., Int. Ed. 2014, 53, 1485.
(l) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014,
[2] B. Maji, M. Breugst, H. Mayr, Angew. Chem., Int. Ed. 2011, 50, 6915.
[3] For trifluoromethylation with TMSCF3 see: J. J. Song, Z. Tan, J. T.
Reeves, F. Gallou, N. K. Yee, C. H. Senanayake, Org. Lett. 2005, 7,
[4] For cyanation with TMSCN see: J. J. Song, F. Gallou, J. T. Reeves,
Z. Tan, N. K. Yee, C. H. Senanayake, J. Org. Chem. 2006, 71, 1273.
[5] J. J. Song, Z. Tan, J. T. Reeves, N. K. Yee, C. H. Senanayake, Org. Lett.
[6] J. J. Song, Z. Tan, J. T. Reeves, D. R. Fandrick, N. K. Yee, C. H.
[7] For reviews focused on NHC catalysis with silicon-containing
compounds see: (a) M. J. Fuchter, Chem. Eur. J. 2010, 16, 12286.
Supplementary material
Common procedures, experimental details and NMR spectra are
.
available for A1 HBF4, 7ab, 7ca, and 10 on the Journal’s
website.
Acknowledgements
The authors acknowledge financial support from the Australian Research
Council through the Discovery (DP120101315 and DP150101522) and
Future Fellowship (FT110100319) programs. The authors also thank Ms
Alison Levens (Monash University) for help in manuscript preparation and
Dr Joel Hooper (Monash University) for studies on enantioselectivity.
(b) L. He, H. Gao, Y. Wang, G.-F. Du, B. Dai, Tetrahedron Lett. 2015,
For adamantly NHC-based catalysis see: (c) K. A. Agnew-Francis,
C. M. Williams, Adv. Synth. Catal. 2016, 358, 675. doi:10.1002/
[8] For recent examples of NHC catalysis with silicon compounds, see for
vinylogous aldol (a) G.-F. Du, L. He, C.-Z. Gu, B. Dai, Synlett 2010,
16, 2513.
References
[1] For a selection of recent reviews on NHC catalysis see: (a) D. M.
Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev.
(b) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.
For vinylogous Mukaiyama–Michael see: (b) Y. Wang, G.-F. Du,
F. Xing, K.-W. Huang, B. Dai, L. He, Asian J. Org. Chem. 2015, 4,
For the Petersen olefination see: (c) Y. Wang, G.-F. Du, C.-Z. Gu,
Forrelated base-mediatedvinylogousMichael additionssee: (d) H. Guo,
F. Xing, G.-F. Du, K.-W. Huang, B. Dai, L. He, J. Org. Chem. 2015, 80,
(c) V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose,
V. Sreekumar, Chem. Soc. Rev. 2011, 40, 5336. doi:10.1039/
(d) J. Douglas, G. Churchill, A. D. Smith, Synthesis 2012, 44, 2295.