C O M M U N I C A T I O N S
Acknowledgment. This work was supported by the Ministerio
de Educacio´n y Ciencia (PB98-1593, MCT-00-BQU-0227) and by
the COST Chemistry Project “Ruthenium catalysts for Fine
Chemistry” (D12/0025/99).
Supporting Information Available: Crystallographic data of 3,
kinetic data, and experimental details for 1-6 (PDF and TXT). This
References
(1) (a) Baldwin, J. E. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: New York, 1991; Vol 5. (b) Houben-Weyl:
Methods of Organic Chemistry: Carbocyclic Four Membered Ring
Compounds, 4th ed.; de Meijere, A., Ed.; Georg Thieme Verlag: Stuttgart,
1997; Vol. 17e. (c) Lautens, M.; Klute W.; Tam, W. Chem. ReV. 1996,
96, 49. (d) Hayashi, Y.; Narasaka, K. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds; Springer-
Verlag: Heidelberg, 1999; Vol. III, Chapter 33.3, p 1255.
(2) (a) Alkynes: Bauer, D.; Harter, P.; Herdtweck, E. Chem. Commun. 1991,
829. Gamble, A. S.; Birdwhistell, K. R.; Templeton, J. L. Organometallics
1988, 7, 1046. Jimenez Tenorio, M. A.; Tenorio, M. J.; Puerta, M. C.;
Valerga, P. Organometallics 2000, 19, 1333. (b) Metal alkynyls: Leroux,
F.; Stumpf, R.; Fischer, H. Eur. J. Inorg. Chem. 1998, 1225. Bullock, R.
M. J. Am. Chem. Soc. 1987, 109, 8087. Weng, W.; Bartik, T.; Johnson,
M. T.; Arif, A. M.; Gladysz, J. A. Organometallics 1995, 14, 889. (c)
Azabutadienes: Gimenez, Ch.; Lugan, N.; Mathieu, R.; Geoffroy, G. L.
J. Organomet. Chem. 1996, 517, 133. (d) Terry, M. R.; Mercando, L. A.;
Kelley, C.; Geoffroy, G. L.; Nombel, P.; Lugan, N.; Mathieu, R.;
Ostrander, R. L.; Owens-Waltewrmire, B. E.; Rheingold, A. L. Organo-
metallics 1994, 13, 843. (e) Imines: Barrett, A. G. M.; Mortier, J.; Sabat,
M.; Sturgess, M. A. Organometallics 1988, 7, 2553. Fischer, H.;
Schalagter, A.; Bidell, W.; Fru¨h, A. Organometallics 1991, 10, 389.
(3) (a) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311. (b) Trost,
B. M.; Toste, F. D.; Pinkerton, A. B. Chem. ReV. 2001, 101, 2067.
(4) (a) Fu¨rstner, A. Chem. ReV. 2000, 100, 3012. (b) Louise, J.; Grubbs, R.
H. Angew. Chem., Int. Ed. 2001, 40, 247 and references therein.
(5) Complexes 1 and 2 have been obtained by protonation of the corresponding
alkynyl derivatives [Ru(η5-C9H7)(CtCR){κ1-(P)-PPh2(C3H5)}(PPh3)]. The
latter complexes were prepared (85-90%) by reaction of [Ru(η5-C9H7)-
Cl{κ1-(P)-PPh2(C3H5)}(PPh3)] with the correspondent alkyne and KOtBu
in CH2Cl2 (see Supporting Information). Selected spectroscopic data for
vinylidene complexes 1 and 2. (1): 31P{1H} NMR (CDCl3) δ 43.4 (d, JPP
) 23.6 Hz), 32.4 (d, JPP ) 23.6 Hz); 1H NMR (CDCl3) δ 2.81 (m, 2H,
PCH2), 4.82 (m, 1H, dCH), 4.32 (m, 1H, dCH2), 4.58 (m, 1H, dCH2),
5.34 (s br, 1H, dCdC(Ph)H); 13C{1H} NMR (CDCl3) δ 360.1 (s br,
dCdC(Ph)H). (2): 31P{1H} NMR (CDCl3) δ 43.6 (d, JPP ) 25.4 Hz),
32.2 (d, JPP ) 25.4 Hz); 1H NMR (CDCl3) 2.31 (s, Me), 2.82 (m, 2H,
CH2), 4.29 (m, 1H, dCH2), 4.57 (m, 1H, dCH2), 5.12 (m, 1H, dCH),
5.31 (s a, dCdCH); 13C{1H} NMR (CDCl3) δ 369.2 (s a, dCdC(p-
MeC6H4)H) (see Supporting Information).
Figure 2. Graphical representation of the reaction of complex 5 (12 mg,
0.0147 mmol, 0.027 M) with PhCtCH (0.040 mL, 0.36 mmol, 0.674 M)
at 45.6 °C in CDCl3, showing the evolution of complexes 5, 1, and 3. The
solid line applied to complex 1 represents the fitting with eq 3.
centric space group P21/n. The other two possible diastereoisomers
and their enantiomers are absent.
To gain kinetic information on the reaction pathway, the reaction
of complex 5 with an excess of PhCtCH in CDCl3 was monitored
in situ by 31P{1H} NMR spectroscopy. A reaction profile obtained
from the experiment at 45.6 °C is shown in Figure 2.
The concentration of complex 5 decreases as the reaction
proceeds and is fitted conveniently with a first-order rate equation
to obtain the observed rate constant for its disappearance, kobs
)
1.20 × 10-3 s-1 (45.6 °C). With the assumption that the back
reactions from the vinylidene intermediate 1 to complex 5 and from
the bicyclic product 3 to the vinylidene are negligible, the overall
process can be simplified to a sequence of two consecutive first-
order reactions, from 5 to 1 (k1), via a fast π-alkyne/vinylidene
tautomerization, and from 1 to 3 (k2).10 Fitting the concentration
values of complex 1 with eq 3 yields the values of k1 (1.28 × 10-3
s-1) (comparable to the value given by the first-order rate equation)
and of k2 (2.12 × 10-4 s-1), the rate constant of the [2 + 2] coupling
reaction.
(6) Selected spectroscopic data. (3): 31P{1H} NMR (CDCl3) δ 81.5 (d, JPP
) 32.6 Hz), 42.3 (d, JPP ) 32.6 Hz); 1H NMR (CDCl3) δ 1.31 (m, 2H,
PCH2), 3.01 (m, 1H, dCCHPh); 13C{1H} NMR (CDCl3): δ 366.0 (s br,
dC). (4): 31P{1H} NMR (CDCl3) δ 78.5 (d, JPP ) 31.2 Hz), 45.7 (d, JPP
) 31.2 Hz); 1H NMR (CDCl3) 1.23 (m, 2H, P-CH2), 3.21 (m, 1H, dC-
CHPh); 13C{1H} NMR (CDCl3) δ 371.0 (s br, dC) (see Supporting
Information).
(7) Complex 5 was prepared (90%) by reaction of [Ru(η5-C9H7)Cl{κ1-(P)-
PPh2(C3H5)}(PPh3)] with NaPF6 in refluxing methanol (see Supporting
Information).
k1
[1] ) [5]
(exp(-k1t) - exp(-k2t))
(3)
0 k2 - k1
(8) Selected spectroscopic data. (6): 31P{1H} NMR (CDCl3) δ 88.4 (d, JPP
) 31.6 Hz), 42.3 (d, JPP ) 31.6 Hz); 1H NMR (CDCl3): δ 1.71 (v t, JHH
) 13.0 Hz, 1H, PCH2), 1.91 (m, 1H, PCH2), 2.57 (m, 1H, CH); 13C{1H}
NMR (CDCl3): δ 360.6 (d, JCP ) 19.6 Hz, dC) (see Supporting
Information).
Experiments at different temperatures in the range 38-59 °C
allow us to obtain the activation parameters for the coupling step,
which are ∆Hq ) 19 ((2) kcal mol-1 and ∆Sq ) -16 ((4) cal
(9) [RuC50H43P2](PF6)‚CH2Cl2, monoclinic, P21/n, yellow-orange crystal, a
) 11.073(3), b ) 25.216(6), c ) 16.324(4) Å, â ) 99.21(2)°, V ) 4499(2)
Å3, T ) -123 ( 1 °C, Z ) 4, R1 ) 0.0556, wR2 ) 0.1517, GOF )
1.044.
(10) Maskill H. The Physical Basis of Organic Chemistry; Oxford University
Press: New York, 1985; p 282.
mol-1 K-1 11
. The value of the activation entropy is consistent with
an ordered structure of the transition state, essentially due to the
loss of conformational freedom of the three single bonds of complex
1.12
(11) The value of ∆Hq is, as expected, smaller than the activation enthalpy
involved in the dimerization of ethylene (43.2 kcal mol-1): Lowry, T.
H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd
ed.; Harper & Row Publishers: New York, 1981; p 829. ∆Hq and ∆Sq
(16 kcal mol-1 and -20 cal mol-1 K-1, respectively) have been reported
for [2 + 2] cycloaddition of dimethylketene with ethylvinyl ether: Isaacs,
N. S.; Stanbury, P. J. Chem. Soc., Perkin Trans, 2 1973, 166.
(12) Galli, C.; Mandolini, L. Eur. J. Org. Chem. 2000, 3117.
(13) Smith, M. B.; March, J. March’s AdVanced Organic Chemistry: Reaction,
Mechanisms and Structure, 5th ed.; John Wiley & Sons: New York, 2001;
p 1077.
In summary, in this work, an unprecedented stereospecific [2 +
2] cycloaddition of two CdC bonds under mild thermal conditions
is reported. It is worth emphasizing that only allenes or activated
alkenes (bearing electron-donating or -withdrawing substituents)13
are able to undergo [2 + 2] cycloadditions under mild conditions.
Otherwise, reaction at high temperature (>100 °C) is required.
Theoretical calculations aimed at shedding light on the stereospecific
cycloaddition mechanism are in progress.
JA027209S
9
J. AM. CHEM. SOC. VOL. 125, NO. 9, 2003 2387