COMMUNICATIONS
[8] C. W. Chan, H. N. C. Wong, J. Am. Chem. Soc. 1985, 107, 4790; M.
Psiorz, H. Hopf, Angew. Chem. 1982, 94, 639; Angew. Chem. Int. Ed.
Engl. 1982, 21, 623; N. Jacobson, V. Boekelheide, Angew. Chem. 1978,
90, 49; Angew. Chem. Int. Ed. Engl. 1978, 17, 46; M. Stˆbbe, O. Reiser,
R. N‰der, A. de Meijere, Chem. Ber. 1987, 120, 1667; T. Wong, S. S.
Cheung, H. N. C. Wong, Angew. Chem. 1988, 100, 716; Angew. Chem.
Int. Ed. Engl. 1988, 27, 705; Erratum: T. Wong, S. S. Cheung, H. N. C.
Wong, Angew. Chem. 1988, 100, 1242; Angew. Chem. Int. Ed. Engl.
1988, 27, 1200; C. W. Chang, H. N. C. Wong,J. Am. Chem. Soc. 1988,
110, 462; H. Buchholz, A. de Meijere, Synlett 1993, 253; O. Reiser, S.
Reichow, A. de Meijere, Angew. Chem. 1987, 99, 1285; Angew. Chem.
Int. Ed. Engl. 1987, 26, 1277; H.-F. Gr¸tzmacher, W. Husemann,
Tetrahedron Lett. 1985, 26, 2431; Y.-H. Lai, S.-M. Lee, J. Org. Chem.
1988, 53, 4472; M. Wittek, F. Vˆgtle, G. St¸hler, A. Mannschreck,
B. M. Lang, H. Irngartinger, Chem. Ber. 1983, 116, 207.
[9] Z.-Z. Yang, B. Kova, E. Heilbronner, J. Lecoultre, C. W. Chan,
H. N. C. Wong, H. Hopf, F. Vˆgtle, Helv. Chim. Acta, 1987, 70, 299.
[10] The largest number of unsaturated bridges reported is three ethenes:
V. Boekelheide, R. A. Hollins, J. Am. Chem. Soc. 1973, 95, 3201; V.
Boekelheide, R. A. Hollins, J. Am. Chem. Soc. 1970, 92, 3512; V.
Boekelheide, W. Schmidt,Chem. Phys. Lett. 1972, 17, 410; H. Hopf, C.
Mlynek, J. Org. Chem. 1990, 55, 1361.
[11] T. Kappe, D. Pocivalnik, Heterocycles 1983, 20, 1367; T. Kappe, W.
Lube, Angew. Chem. 1971, 83, 967; Angew. Chem. Int. Ed. Engl. 1971,
10, 925; W. Friedrichsen, T. Kappe, A. Bˆttcher,Heterocycles 1982, 19,
1083; K. T. Potts, M. Sorm, J. Org. Chem. 1972, 37, 1422.
[12] Compound 4 should be formed as a mixture of syn and anti isomers;
the relative ratio of syn:anti cannot be determined on the basis of
NMR spectroscopy (see Supporting Information). We speculate the
anti isomer for compound 4 to be preferentially formed as a result of
1) steric repulsion between two phenyl substituents (located on
opposite sides of the saddle-shaped dibenzocyclooctatetraenene ring
and 2) minimization of dipole dipole interactions of the lactam
carbonyls.
M. C. Holthausen, A Chemist©s guide to density functional theory,
Wiley-VCH, Weinheim, 2000.
[17] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; b) A. D.
Becke, J. Chem. Phys. 1993, 98, 5648.
[18] HF/3-21G* was recently proposed to be very accurate for predicting
geometries of series-strained cyclophanes: R. A. Pascal, Jr.,J. Phys.
Chem. A 2001, 105, 9040.
[19] All calculations used: Gaussian98 (RevisionA.7), M. J. Frisch, G. W.
Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S.
Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O.
Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y.
Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G.
Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S.
Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
[20] All molecules were fully optimized and frequency calculations were
performed at the same level for all stationary points to check that all
frequencies are real and, consequently, all the calculated structures
are minima on the potential energy surface. 1 has molecular D2h
symmetry.
[21] The perspective in Figure 1b, which shows a wider distance between
the protons at C9’ and C17’ than the carbon atoms to which they are
bonded, is misleading since the actual positions were not determined
from the data and are an artifact resulting from hydrogen atom
placement by the program.
[22] The known X-ray structure of [24](1,2,4,5)cyclophane (A. W. Hanson,
Acta Crystallogr. Sect. B 1977, 33, 2003) is very similar to 1: the
separation of the central carbon atoms of the two rings is 2.950 ä, and
that between the two strained ring protons is 2.919 ä (calcd value).
ꢀ
[13] Although a single isomer is shown for compounds 5 and 6, one cannot
say with certainty if it is the anti isomer (as shown). Chromatographic
isolation of 5 and 6 produces a single isomer, as evidenced by NMR
spectroscopy. However, final structural determination will have to rest
with X-ray crystallography. It is possible that recrystallization of 4,
prior to pyrolysis, allowed selection of only one isomer, which could
then only produce a single isomer of 5 (and hence 6).
[14] H. N. C. Wong, P. J. Garratt, F. Sondheimer, J. Am. Chem. Soc. 1974,
96, 5604; A. Orita, D. Hasegawa, T. Nakano, J. Otera, Chem. Eur. J.
2002, 8, 2000. Some new routes for the synthesis of the dibenzocy-
clooctadiyne are published elsewhere (S. Chaffins, M. Brettreich, F.
Wudl, Synthesis 2002, 1191).
The dihedral angle between the C C bonds in the benzene moiety is
12.28.
[23] GIAO-B3LYP/6-311 þ G(d,p)//B3LYP/6-31(d) calculations corrected
for the chemical shift of benzene (d ¼ 134.8 calcd, 128.0 ppm exptl)
predict chemical shifts of d ¼ 141.4, 147.8, 148.3, 125.0, and 126.6 ppm
for C9, C8, C6, C5, and C4, respectively, which allows an assignment of
the experimentally observed resonance at d ¼ 139.3 ppm to the C9
carbon atom.
[24] V. Boekelheide, Top. Curr. Chem. 1983, 113, 110.
[25] To access the large positive and negative potentials of the cyclophanes,
the cyclic voltammetry experiments were performed in anisole (0.25m
Bu4NPF6) for reduction wave and in nitrobenzene (0.1m Bu4NPF6) for
oxidation wave measurements. The reference electrode was Ag/
AgNO3 and all the potentials are quoted versus the ferrocene/
ferrocenium couple (internal standard) with E0 ¼ þ 0.22 V and
þ 0.23 V versus Ag/AgNO3 in anisole and nitrobenzene, respectively.
[26] R. C. Haddon, Science 1993, 261, 1545.
[15] Crystal data for 1: Single crystals were obtained by slow evaporation
from CS2. Compound 1 (C36H20, Mr ¼ 452.52) crystallizes in the
ꢀ
triclinic space group P1, a ¼ 8.541(6), b ¼ 8.651(6), c ¼ 9.114(6) ä, a ¼
83.671(12), b ¼ 68.044(12), g ¼ 62.543(10)8, V¼ 552.6(6) ä3, Z ¼ 1,
1calcd ¼ 1.360 gcmꢀ3, F(000) ¼ 236, T¼ 100(2) K. Data collection: Bru-
ker AXS CCD with graphite-monochromatic MoKa radiation (l ¼
0.71073 ä). Crystal dimensions: 0.10 î 0.15 î 0.20 mm; 4.8 ꢁ 2q ꢁ
56.048; 3102 measured reflections, of which 2136 [Rint ¼ 0.047] were
independent and were used for the structure refinement of 163 pa-
rameters. An empirical absorption correction (SADABS) was applied.
The structure was solved by direct methods using SHELXS-97 and
refined by the full-matrix least-squares method on F2 using SHELXL-
97 (G. M. Sheldrick, SHELXS-98, Program for the Solution of Crystal
Structures, University of Gˆttingen, Gˆttingen (Germany), 1997) with
anisotropic thermal parameters for all non-hydrogen atoms. The
hydrogen atoms were introduced at calculated positions (riding
[27] Q. Xie, E. Pÿrez-Cordero, L. Echegoyen, J. Am. Chem. Soc. 1992, 114,
3978.
[28] G. J. Bodwell, J. N. Bridson, T. J. Houghton, J. W. J. Kennedy, M. R.
Mannion, Chem. Eur. J. 1999, 5, 1823; G. J. Bodwell, J. J. Fleming,
M. R. Mannion, D. O. Miller, J. Org. Chem. 2000, 65, 5360.
[29] It is claimed by Boekelheide et al. that superphane {[26](1,2,3,4,5,6)cy-
clophane} is the most strained cyclophane (see ref. [30]). However, by
symmetry, its benzene rings are constrained to be nearly planar (for X-
ray analysis, see A. W. Hanson, T. S. Cameron,J. Chem. Res. (M) 1980,
10, 4201) and its reactivity with TCNE was not reported.
[30] Y. Sekine, V. Boekelheide, J. Am. Chem. Soc. 1981, 103, 1777.
[31] G. J. Bodwell, private communication.
ꢀ
model) with Csp2 H bond lengths of 0.95 ä. At convergence, R1 ¼
0.0888 (I > 2s(I)) and wR2 ¼ 0.2345; min/max residual electron
density: ꢀ0.371/ þ 0.490 eä2. CCDC-184166 contains the supplemen-
tary crystallographic data for this paper. These data can be obtained
the Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB21EZ, UK; fax: (þ 44)1223-336-033; or deposit
@ccdc.cam.ac.uk).
[32] T.-L. Chan, T. C. W. Mak, C.-D. Poon, C. Wong, J. H. Jia, L. L. Wang,
Tetrahedron 1986, 42, 655; Y.-M. Man, T. C. W. Mak, H. N. C. Wong,J.
Org. Chem. 1990, 55, 3214.
[16] a) R. G. Parr, W. Yang, Density-Functional Theory of Atoms and
Molecules, Oxford University Press, New York, 1989; b) W. Koch,
Angew. Chem. Int. Ed. 2002, 41, No. 19
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4119-3691 $ 20.00+.50/0
3691