10.1002/ejoc.202100328
European Journal of Organic Chemistry
COMMUNICATION
alkylation[13] and it is an additional indication of the lower toxicity
of ß-aminocarbonates compared to their chlorine homologues.
Future work on this novel, one-pot, anchimerically driven
alkylation reaction include investigations on other carbonate
homologues of mustard gases, as well as potential applications
for the synthesis and functionalization of macromolecules.
Wisnoski, W.H. Leister, Y. Wang, Z. Zhao, C.W. Lindslay, Org. Lett.,
2004, 6 (9), 1453-1456.
[13] a) P. Tundo, M. Musolino, F. Aricò, Green. Chem., 2018, 20, 28-85; b)
G. Fiorani, A. Perosa, M. Selva, Green Chem., 2018, 20, 288-322; c)
M. Selva, A. Perosa, D. Rodríguez-Padrón, R. Luque, ACS Sustainable
Chem. Eng. 2019, 7, 7, 6471-6479.
[14]
F. Aricò, M. Chiurato, J. Peltier, P. Tundo, Eur. J. Org. Chem. 2012,
3223−3228.
[15] a) F. Aricò, S. Evaristo, P. Tundo, ACS Sustainable Chem. Eng. 2013,
1, 1319−1325; b) F. Aricò, S. Evaristo, P. Tundo, RSC Adv. 2014, 4,
31071−31078; c) F. Aricò, A. S. Aldoshin, P. Tundo, ACS Sustainable
Chem. Eng. 2016, 4, 2843−285; d) F. Aricò, P. Tundo, Pure Appl.
Chem. 2016, 88, 3–16; e) F. Aricò, I. Udrea, M. Crisma, P. Tundo,
ChemPlusChem 2015, 80, 471−474; f) S. Venkataraman, V. W. L. Ng,
D. J. Coady, H. W. Horn, G. O. Jones, T. S. Fung, H. Sardon, R. M.
Waymouth, J. L. Hedrick, Y. Y. Yang, J. Am. Chem. Soc. 2015, 137,
13851−13860; g) F. Aricò, A. S. Aldoshin, M. Musolino, M. Crisma, P.
Tundo, J. Org. Chem. 2018, 83, 236-243.
Acknowledgements
Prof. C. Salata wants to acknowledge for funding DOR 2020,
Padova University. Prof. S. Castellano wants to acknowledge for
funding Regione Campania (Italy) grant “Combattere la
resistenza tumorale: piattaforma integrata multidisciplinare per
un approccio tecnologico innovativo alle oncoterapie
CAMPANIA ONCOTERAPIE” (Project B61G18000470007).
–
[16] M. C. Bryan, P. J. Dunn, D. Entwistle, F. Gallou, S. G. Koenig, J. D.
Hayler, M. R. Hickey, S. Hughes, M. E. Kopach, G. Moine, P.
Richardson, F. Roschangar, A. Steven, F. J. Weiberth, Green Chem.,
2018, 20, 5082–5103.
Keywords: Green Chemistry • chlorine-free • direct alcohol
substitution • dialkyl carbonate • Neighbouring group
participation
[17] K. R. Bonepally, N. Takahashi, N. Matsuoka, H. Koi, H. Mizoguchi, T.
Hiruma, K. Ochiai, S. Suzuki, Y. Yamagishi, H. Oikawa, A. Ishiyama, R.
Hokari, M. Iwatsuki, K. Otoguro, S. O̅ mura, N. Kato, H. Oguri, J. Org.
Chem. 2020, 85, 9694−9712.
[1]
[2]
[3]
[4]
[5]
M. Despretz, Ann. Chim. Phy.1822, 21, 437–438.
[18] a) Y. Ge, Y. Jin, C. Wang, J. Zhang, Z. Tang, J. Peng, K. Liu, Y. Li, Y.
Zhou, X. Ma, ACS Med. Chem. Lett. 2016, 7, 1050−1055; b) M. Tercel,
H. H. Lee, S. Y. Mehta, J.-J. Youte Tendoung, S. Y. Bai, H. D. Sarath
Liyanage, F. B. Pruijn, J. Med. Chem. 2017, 60, 5834−5856.
A. Niemann, Ann. Chem. Pharm.1860,113, 288–292.
R. J. Duchovic, J. A. Vilensky, J. Chem. Educ. 2007, 84, 944-948.
B. Chabner, T. Roberts, Nat. Rev. Cancer. 2005, 5, 65–72
a) Q.-Q. Wang, R. Ara Begum, V. W. Day, K. Bowman-James, Inorg.
Chem. 2012, 51, 760−762. b) J.-H. Choi, N. E. Schloerer, J. Berger, M.
H. Prechtl, Dalton Trans. 2014, 43, 290−299; c) H. Sharghi, M.A.
Nasseri, K. Niknam, J. Org. Chem., 2001, 66, 7287-7293.
a) J F. Bermejo, P. Ortega, L. Chonco, R. Eritja, R. Samaniego, M.
Müllner, E. de Jesus, F. J. de la Mata, J. C. Flores, R. Gomez, A.
MuÇoz-Fernandez, Chem. Eur. J., 2007, 13, 483-495; b) B. Liu, W.L Yu,
Y.H. Lai, W. Huang, Macromolecules, 2002, 35, 4975-4982; c) Q.L. Fan,
Y. Zhou, X.M. Lu, X.Y. Hou, W. Huang, Macromolecules, 2005, 38,
2927-2936; d) R.B. Breitenkamp, G.N. Tew, Macromolecules, 2007, 34,
1163-1165; e) J. Li, J. Meng, X. Huang, Y. Cheng, C. Zhu, Polymer,
2010, 51, 3425-3430.
[19] a) B. Kumar, A. R. Dwivedi, B. Sarkar, S. K. Gupta, S. Krishnamurthy,
A. K. Mantha, J. Parkash, V. Kumar, ACS Chem. Neurosci. 2019, 10,
252−265; b) H. J. Kim, B. K. Jang, J.-H. Park, J. W. Choi, S. J. Park, S.
R. Byeon, A. N. Pae, Y. S. Lee, E. Cheong, K. D. Park, European
Journal of Medicinal Chemistry 2020, 185, 111777.
[6]
[20] M. Gibbs, J. Am. Chem. Soc. 1935, 57, 1137−1139.
[21] a) G. Ferretti,M. Dukat, M. Giannella, A. Piergentili, M. Pigini, W.
Quaglia, M. I. Damaj, B. R. Martin, R. A. Glennon, J. Med. Chem. 2002,
45, 4724-473; b) I. Tomassoli, D. Gündisch, Bioorg. Med. Chem. 2015,
23, 15 (1), 4375-4389; c) H. M. Ragab, J. S. Kim, M. Dukat, H.Navarro,
R. A. Glennon, Bioorg. Med. Chem. Lett. 2006, 16, 4283–4286.
[22] M. J. Meegan, R. B. Hughes, D. G. Lloyd, D. Clive Williams, D. M.
Zisterer, J. Med. Chem. 2001, 44, 1072-1084.
[7]
a) Q.-Q. Wang, R. A. Begum, V. W. Day, K. Bowman-James, Org.
Biomol. Chem. 2012, 10, 8786−8793; b) K. Ghabili, P. S. Agutter, M.
Ghanei, K. Ansarin, Y. Panahi, M. M. Shoja, Crit. Rev. Toxicol. 2011,
41, 384−403; c) F. R. Tang, W. K. Loke, Crit. Rev. Toxicol. 2012, 42,
688−702.
[23] a) R. Yadav, R. Bansal, S. Kachler, K.N. Klotz, European Journal of
Medicinal Chemistry 2014, 75, 327-335; b) G. Chen, Z. Liu, Y. Zhang,
X. Shan, L. Jiang, Y. Zhao, W. He, Z. Feng, S. Yang, G. Liang, ACS
Med. Chem. Lett. 2013, 4, 69−74.
[8]
[9]
K. Bleicher, H. J. Böhm, K. Müller, A. I. Alanine, Nat. Rev. Drug. Discov.
2003, 2, 369–378.
[24] a) M. J. Robertson, G. Hadzic, J. Ambrus, D. Yuri Pomè, E. Hyde, A.
Whiting, A. Mariana, L. von Kleist, N. Chau, V. Haucke, P. J. Robinson,
A. McCluskey, ACS Med. Chem. Lett. 2012, 3, 352−356; b) M. H. Bolli,
S. Abele, C. Binkert, R. Bravo, S. Buchmann, D. Bur, J. Gatfield, P.
Hess, C. K., C. Mangold, B. Mathys, K. Menyhart, C. Müller, O. Nayler,
M. Scherz, G. Schmidt, V. Sippel, B. Steiner, D. Strasser, A. Treiber, T.
Weller, J. Med. Chem. 2010, 53, 10, 4198–4211.
a) C. Zhou, R.C. Larock, J. Org. Chem., 2005, 70, 3765-3777; b) Eli
Lilly and Company, US 4,133,814, 1979; c) Eli Lilly and Company, US
6,018,056, 2000; d) W. Huang, J. Xu, C. Liu, Z. Chen, Y. Gu, J. Org.
Chem., 2019, 84, 2941-2950: e) Blasinachim S.p.A., US 4,336,396,
1982.
[10] a) N.K. Lim, P. Weiss, B. X. Li, C. H. McCulley, S. R. Hare, B. L.
Bensema, T. A. Palazzo, D. J. Tantillo, H. Zhang,F. Gosselin, Org. Lett.,
2017, 19, 6212-6215; b) N. W. Sach, D. T. Richter, S. Cripps, M. Tran-
Dubé, H. Zhu, B. Huang, J. Cui, S. C. Sutton, Org. Lett., 2012, 14 (15),
3886-3889.
[25] a) E. Piccoli, M. Nadai, C.M. Caretta, V. Bergonzini, C. Del Vecchio,
H.R. Ha, L. Bigler, D. Dal Zoppo, E. Faggin, A. Pettenazzo, R. Orlando,
C. Salata, A. Calistri, G. Palù, A. Baritussio, Biochem. Pharmacol. 2011,
82, 1234-49. b) L. Cegolon, C. Salata, E. Piccoli, V. Juarez, G. Palù, G.
Mastrangelo, A. Calistri, Int. J. Hyg. Environ. Health. 2014, 217, 17-22.
[26] S. Jeon, M. Ko, J. Lee, I. Choi, S.Y. Byun, S. Park, D. Shum, S. Kim,
Antimicrob. Agents Chemother. 2020, 64, e00819-20.
[11] a) D. J. Adams, D. J. Adams, M. Dai, G. Pellegrino, B. K. Wagnera, A.
M. Sterna, A. F. Shamjia, S. L. Schreiber, PNAS, 2012, 109 (38),
15115-15120; b) Z.V. Boskovic, M. M. Hussain, D. J. Adams, M. Dai, S.
L. Schreiber, Tetrahedron, 2013, 69, 7559-7567.
[12] a) V. Kotek, P. Polák, H. Dvoráková, T. Tobrman, Eur. J. Org. Chem.,
2016, 5037-5044; b) Eli Lilly and Company, US 5,512,684, 1996; c)
Zhejiang San Meng Hengkang Pharmaceutical Co., CN 109988132 A,
2019; d) T.W. Wittig, M- Decker, J. Lehmann, J. Med. Chem., 2004, 47,
4155-4158; e) R. Kikumoto, A. Tobe, S. Tonomura, J. Med. Chem.,
1981, 24, 145-148; f) C. Mukhopadhyay, P.K. Tapaswi, M.G.B. Drew,
Tetrahedron Lett., 2010, 51, 3944-3950; g) S.E. Wolkenberg, D.D.
5
This article is protected by copyright. All rights reserved.