C O M M U N I C A T I O N S
Table 1. Chelation-Controlled Asymmetric Arylation of 6a with
Aryl Halides
methylcyclopentanones that delivers good to very good two-step
yields. The reactions were performed under air with a weak base,
and the enantioselectivities of the produced cyclopentanones are
the highest reported so far. An extension to other cyclic ketones
and new classes of chelating substrates seems promising.
Acknowledgment. We thank the Swedish Foundation for
Strategic Research, the Swedish Research Council, and Dr. Boris
Schmidt and Dr. Wilfried A. Ko¨nig for help with the chiral GC.
Supporting Information Available: Experimental procedures, and
spectroscopic and analytical data for all new compounds (PDF). This
References
(1) (a) Hamada, T.; Buchwald, S. L. Org. Lett. 2002, 4, 999-1001. (b) Moradi,
W. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7996-8002. (c)
Fox, J. M.; Huang, X. H.; Chieffi, A.; Buchwald, S. L. J. Am. Chem.
Soc. 2000, 122, 1360-1370. (d) Hamann, B. C.; Hartwig, J. F. J. Am.
Chem. Soc. 1997, 119, 12382-12383. (e) Palucki, M.; Buchwald, S. L.
J. Am. Chem. Soc. 1997, 119, 11108-11109.
(2) (a) Hamada, T.; Chieffi, A.; Åhman, J.; Buchwald, S. L. J. Am. Chem.
Soc. 2002, 124, 1261-1268. (b) Åhman, J.; Wolfe, J. P.; Troutman, M.
V.; Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 1918-
1919.
a Cumulative two-step yield after silica column chromatography (>95%
purity by GC-MS). b Ee of (+) isomer of 4 as determined by chiral HPLC
or chiral GC. c Yield calculated after intermediate isolation of 7g (53%)
and subsequent hydrolysis (88%).
(3) Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem. Soc. 2001, 123, 8217-
8225.
(4) (a) Heck, R. F. Org. React. 1982, 27, 345-363. (b) Shibasaki, M.; Boden,
C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371-7395. (c) Larhed, M.;
Hallberg, A. In Handbook of Organo-Palladium Chemistry for Organic
Synthesis; Negishi, E.-i., Ed.; Wiley-Interscience: New York, 2002; Vol.
1, pp 1133-1178. (d) Shibasaki, M.; Miyazaki, F. In Handbook of Organo-
Palladium Chemistry for Organic Synthesis; Negishi, E.-i., Ed.; Wiley-
Interscience: New York, 2002; Vol. 1, pp 1283-1315.
Chart 1. Proposed Structure of Chelated π-Intermediate D
(5) For examples of related chelation-controlled Heck reactions, see: (a) Itami,
K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, J. J. Am.
Chem. Soc. 2001, 123, 11577-11585. (b) Badone, D.; Guzzi, U.
Tetrahedron Lett. 1993, 34, 3603-3606. (c) Larhed, M.; Andersson, C.
M.; Hallberg, A. Acta Chem. Scand. 1993, 47, 212-217. (d) Andersson,
C. M.; Larsson, J.; Hallberg, A. J. Org. Chem. 1990, 55, 5757-5761.
(6) Buezo, N. D.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 1998, 120,
7129-7130.
(7) For examples of metal chelating chiral auxiliary in non-Heck transforma-
tions, see: (a) Westwell, A. D.; Williams, J. M. J. Tetrahedron 1997, 53,
13063-13078. (b) Breit, B. Chem.-Eur. J. 2000, 6, 1519-1524.
(8) General experimental procedure: Olefin 6a (0.78 mmol), aryl halide 2a-i
(0.60 mmol), LiCl (1.2 mmol), NaOAc (0.72 mmol), K2CO3 (0.72 mmol),
Pd(OAc)2 (0.018 mmol), and H2O (0.2 mL) were mixed in 2 mL of DMF
and heated at a given time and temperature (Table 1).
(9) Reviews covering the creation of chiral quaternary centers: (a) Christoffers,
J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591-4597. (b) Corey, E.
J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388-401.
(10) The proposed structure of the π-intermediate
D was obtained by
participate in the generation of the six-membered palladacycle prior
to the subsequent â-elimination. The presentation of the oxidative
addition complex via nitrogen coordination explains the high
reactivity of the system14 and why the quaternary center can be
created. To investigate the difference in reaction rate enhancement,
a competitive experiment3,15 with 1 (0.5 equiv) and 6a (0.5 equiv)
semimanual modeling, see Supporting Information.
(11) (a) Samsel, E. G.; Norton, J. R. J. Am. Chem. Soc. 1984, 106, 5505-
2079. (b) McCrindle, R.; Ferguson, G.; Khan, M. A.; McAlees, A. J.;
Ruhl, B. L. J. Chem. Soc., Dalton Trans. 1981, 986-991. (c) Thorn, D.
L.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 2079-2090.
(12) For
a discussion regarding the diastereoselectivity, see Supporting
Information.
(13) For 17O NMR and conformation of cyclic vinyl ethers, see: (a) Taskinen,
E.; Ora, M. Magn. Reson. Chem. 1995, 33, 239-243. (b) Taskinen, E.;
Hellman, J. Magn. Reson. Chem. 1994, 32, 353-357.
1
and phenyl iodide (4 equiv) was performed at 50 °C. A H NMR
analysis after 45 h proved that nearly equal amounts of phenylated
3d and 7d had been formed. This result suggests that the
accelerating capacities of the dimethylamino- and the N-methylated
pyrrolidin frameworks are comparable.
In conclusion, the described chelation-controlled Heck methodol-
ogy provides an alternative and mild approach to 2-aryl-2-
(14) We have previously shown that chelating tertiary amine tethered vinyl
ethers are more reactive than the noncoordinating alkyl counterparts in
Heck arylations (see refs 3 and 5c,d).
(15) Westwell, A. D.; Williams, J. M. J. J. Chem. Soc., Perkin Trans. 1 1996,
1-2.
JA029646C
9
J. AM. CHEM. SOC. VOL. 125, NO. 12, 2003 3431