Please do not adjust margins
RSC Advances
Page 7 of 11
DOI: 10.1039/C5RA26283F
Journal Name
ARTICLE
4
5
(a) C. K. Brozek and M.Dinca, Chem. Soc. Rev., 2014, 43,
5456; (b) P. Ramaswamy, N. E. Wong and G. K. H. Shimizu,
Chem. Soc. Rev., 2014, 43, 5913.
(a) S. Sen, N. N. Nair, T. Yamada, H. Kitagawa and P. K.
Bharadwaj, J. Am. Chem. Soc., 2012, 134, 19432; (b) M.
Sadakiyo, T. Yamada and H. Kitagawa, J. Am. Chem. Soc.,
2014, 136, 13166; (c) M. Sadakiyo, T. Yamada and H.
Kitagawa, J. Am. Chem. Soc., 2009, 131, 9906.
(a) X. N. Cheng, W. X. Zhang, Y. Y. Lin, Y. Z. Zheng and X. M.
Chen, Adv. Mater., 2007, 19, 1494; (b) X. Y. Wang, Z. M.
Wang and S. Gao, Chem. Commun., 2008, 281.
(a) J. H. Deng, X. L. Yuan and G. Q. Mei, Inorg. Chem.
Commun., 2010, 13, 1585; (b) Q. Y. Yang, K. Li, J. Luo, M. Pan
and C. Y. Su, Chem. Commun., 2011, 47, 4234.
and the substrates and/or reagents are able to replace them;
solvent exchange studies were performed. For such an experiment,
powdered samples of both CPs were first heated at 150 °C under
vacuum to remove lattice as well as coordinated water molecules
followed by allowing the sample to equilibrate in
a sealed
environment of D2O vapors. Such an experiment resulted in clean
exchange of H2O by D2O and the νO-D stretches were observed at ca.
2500 cm-1 with a shift of ca. 1000 cm-1 from νO-H stretches (Fig. S14
and S15, ESI). It is important to mention that such a D2O–exchange
led to nearly complete replacement of both coordinated and lattice
water molecules, therefore, firmly establishing the labile nature of
the coordinated water molecules. We therefore suggest that a
substrate could easily replace the coordinated water molecule(s)
followed by its activation by the Lewis acidic lanthanide metal ion
before a nucleophile attacks to produce the desired product.
6
7
8
(a) L. Q. Ma, C. Abney and W. B. Lin, Chem. Soc. Rev., 2009,
38, 1248; (b) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C.-
Y. Su, Chem. Soc. Rev., 2014, 43,
Dhakshinamoorthy and H. Garcia, Chem. Soc. Rev., 2014, 43
6011; (c) A.
,
5750; (d) A. Corma, H. Garcia and F. X. L. I. Xamena, Chem.
Rev., 2010, 110, 4606; (e) J. Y. Lee, O. K. Farha, J. Roberts, K.
A. Scheidt, S. B. T. Nguyen and J. T. Hupp, Chem. Soc. Rev.,
2009, 38, 1450.
(a) M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am.
Chem. Soc., 1994, 116, 1151; (b) D. Jiang, T. Mallat, F.
Krumeich and A. Baiker, J. Catal., 2008, 257, 390; (c) M. J.
Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H. Park and M. J.
Rosseinsky, Chem. Commun., 2008, 1287; (d) B. Xiao, H. Hou
and Y. Fan, J. Organomet. Chem., 2007, 692, 2014; (e) L.
Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A.
Jacobs and D. E. D. Vos, Chem.–Eur. J., 2006, 12, 7353.
Conclusions
This work has shown the synthesis and characterization of Eu- and
Tb-based coordination polymers that were synthesized using a Co-
based metalloligand offering appended arylcarboxylate groups.
Both coordination polymers displayed the generation of 2D
architectures due to the involvement of various intermolecular H-
bonds whereas thermal studies illustrated the stable nature of the
2D architecture. Both coordination polymers functioned as the
heterogeneous catalysts for the ring-opening reactions of assorted
epoxides utilizing several nucleophiles. The illustration of regio-
selective ring-opening reactions; solvent-free catalytic conditions;
and reusability of both catalysts depicted the importance of
lanthanide-based coordination polymers in the heterogeneous
catalysis.
9
10 (a) T. J. Pinnavaia, Science, 1983, 220, 365; (b) M. E. Davis,
Acc. Chem. Res., 1993, 26, 111; (c) J. T. Hupp and K. R.
Poeppelmeier, Science, 2005, 309, 2008; (d) A. Gil, L. M.
Gandia and M. A. Vicente, Catal. Rev., 2000, 42, 145; (d) F.
Bedioui, Coord. Chem. Rev., 1995, 144, 39.
11 (a) B. F. Abrahams, A. Hawley, M. G. Haywood, T. A. Hudson,
R. Robson and D. A. Slizys, J. Am. Chem. Soc. 2004, 126,
2894; (b) R. Robson, J. Chem. Soc., Dalton Trans., 2000, 3735;
(c) R. W. Saalfrank, H. Maid and A. Scheurer, Angew. Chem.
Int. Ed. 2008, 47, 8794.
Acknowledgements
12 (a) T. R. Cook, Y.-R. Zheng and P. J. Stang, Chem. Rev., 2013,
113, 734; (b) R. Chakrabarty, P. S. Mukherjee and P. J. Stang,
Chem. Rev., 2011, 111, 6810; (c) S. Leininger, B. Olenyuk and
P. J. Stang, Chem. Rev., 2000, 100, 853; (d) J. W. Colson and
RG acknowledges the financial support from the Science and
Engineering Research Board (SERB), New Delhi and the
University of Delhi. Authors thank the CIF-USIC at this
university for the instrumental facilities including X-ray data
collection and AIRF center of JNU, New Delhi for the GC–MS
facility.
W. R. Dichtel, Nat. Chem. 2013, 5, 453; (e) M. Kondracka and
U. Englert, Inorg. Chem. 2008, 47, 10246; (f) S.-I. Noro, Phys.
Chem. Chem. Phys., 2010, 12, 2519; (g) C. Marchal, Y.
Filinchuk, D. Imbert, J.-C. G. Bunzli and M. Mazzanti, Inorg.
Chem. 2007, 46, 6242.
13 (a) Y. Huang, T. Liu, J. Lin, J. Lu, Z. Lin and R. Cao, Inorg.
Chem. 2011, 50, 2191; (b) S. Kitagawa, S. Noro, T. Nakamura,
Chem. Commun. 2006, 701; (c) P. Chaudhuri, V. Kataev, B.
Buchner, H.-H. Klauss, B. Kersting and F. Meyer, Coord.
Chem. Rev. 2009, 253, 2261; (d) M. C. Das, S. Xiang, Z. Zhang
and B. Chen, Angew. Chem. Int. Ed. 2011, 50, 10510; (e) L.
Carlucci, G. Ciani, S. Maggini, D. M. Proserpio and M.
Visconti, Chem. Eur. J. 2010, 16, 12328; (f)] S. R. Halper, L.
Notes and references
1
(a) G. Kumar and R. Gupta, Chem. Soc. Rev., 2013, 42, 9403;
(b) G. Ferey, Chem. Soc. Rev., 2008, 37, 191; (c) M. Eddaoudi,
D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe and O.
M. Yaghi, Acc. Chem. Res., 2001, 34, 319; (d) M. O’Keeffe and
O. M. Yaghi, J. Solid State Chem., 2005, 178, 5; (e) R. Sessoli
and A. K. Powell, Coord. Chem. Rev., 2009, 253, 2328; (f) M.
Kurmoo, Chem. Soc. Rev., 2009, 38, 1353; (g) R. J. Kuppler, D.
J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. young, D.
Yuan, D. Zhao, W. Zhuang and H.-C. Zhou, Coord. Chem. Rev.,
2009, 253, 3042.
Do, J. R. Stork and S. M. Cohen, J. Am. Chem. Soc. 2006, 128
15255.
,
14 (a) A. Ali, G. Hundal and R. Gupta, Cryst. Growth Des. 2012,
12, 1308; (b) G. Kumar, H. Aggarwal and R. Gupta, Cryst.
Growth Des. 2013, 13, 74; (c) S. Srivastava, H. Aggarwal and
R. Gupta, Cryst. Growth Des. 2015, 15, 4110; (d) A. Ali, D.
Bansal and R. Gupta, J. Chem. Sci. 2014, 126, 1535.
15 (a) A. Mishra, A. Ali, S. Upreti and R. Gupta, Inorg. Chem.
2008, 47, 154; (b) A. Mishra, A. Ali, S. Upreti, M. S.
Whittingham and R. Gupta, Inorg. Chem. 2009, 48, 5234; (c)
A. P. Singh and R. Gupta, Eur. J. Inorg. Chem. 2010, 4546. (d)
2
3
(a) L. Pan, D. H. Olson, L. R. Ciemnolonski, R. Heddy and J. Li,
Angew. Chem., Int. Ed., 2006, 45, 616; (b) J. R. Li, R. J.
Kuppler and H. C. Zhou, Chem. Soc. Rev., 2009, 38, 1477.
(a) M. O’Keeffe and O. M. Yaghi, Chem. Rev., 2012, 112, 675;
(b) D. J. Tranchemontagne, J. L. Mendoza-Cortes’s, M.
O’Keeffe and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1257.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins