A. Bernardi et al. / Tetrahedron: Asymmetry 10 (1999) 3403–3407
3407
3.5. Methylester hydrolysis. Synthesis of 4
To a solution of a 4:1 mixture of the trans and cis monomethyl esters 3 and 2 (1 g, 5.4 mmol, 1 equiv.)
in 3:1 MeOH:H2O (8 ml) LiOH·H2O (863 mg, 20.6 mmol, 3.8 equiv.) was added. The solution was
stirred at room temperature for 2 h, then concentrated under vacuum before adding 6N HCl to pH=1.
The aqueous phase was extracted with AcOEt, the organic solvent dried with Na2SO4 and evaporated to
1
yield 870 mg of 4:1 trans:cis diacids (95%). H NMR (200 MHz, CDCl3): 2.1–2.7 (m); 2.0 (m, 1H of
the trans diacid); 3.0–3.2 (2m, 1H of the cis diacid); 5.7 (m).
3.6. Isolation of 4
To a solution of a 4:1 mixture of the trans and cis diacids (933 mg total, containing 186.6 mg of cis
diacid, 1.09 mmol, 1 equiv.) in dry benzene (10 ml) Ac2O (120 µl, 1.09 mmol, 1 equiv.) was added under
1
N2. The solution was warmed to reflux for ca. 2 h (formation of the cis anhydride is monitored by H
NMR), then the solvent was evaporated and the residue crystallized from benzene (2 ml) to yield 595
1
mg of pure 4 (80%). [α]D +123 (c 2.78, EtOH) {lit.2 [α]D +160 (c 2.7, EtOH.)}; Mp 145–147°C; H
NMR (200 MHz, CDCl3): 2.1–2.7 (m, 4H), 2.85 (m, 2H, H1 and H2), 5.75 (m, 2H, H4 and H5), 9.6 (bs,
2H, COOH). 13C NMR (50.3 MHz, CDCl3): 28.5, 42.1, 125.5, 181.5. IR (CHCl3): 3300–2900, 1714.
Analysis calcd. for C8H10O4: C 56.47, H 5.92; found: C 56.25, H 6.09.
The enantiomeric excess of 4 was determined to be 85% by synthesizing the bis-mandelate ester
(Scheme 2) according to the reported procedure.16 1H NMR (C6D6, 200 MHz): 2.18–2.7 (m, 4H),
3.0–3.25 (m, 8H), 5.4 (m, 2H, H4 and H5), 6.08 (s, 1H, benzylic proton of the (1R,2R) diester), 6.11
(s, 1H, benzylic proton of the (1S,2S) diester), 7.0–7.5 (m, 5H).
Acknowledgements
A fellowship to D.D. from GlaxoWellcome is gratefully acknowledged.
References
1. Walborsky, H. M.; Barash, L.; Davis, T. C. J. Org. Chem. 1961, 26, 4778–4779.
2. Walborsky, H. M.; Barash, L.; Davis, T. C. Tetrahedron 1963, 19, 2333–2351.
3. Furuta, K.; Iwanaga, K.; Yamamoto, H. Tetrahedron Lett. 1986, 27, 4507–4510.
4. Solladie, G.; Lohse, O. J. Org. Chem. 1993, 58, 4555–4563.
5. Corey, E. J.; Su, W. Tetrahedron Lett. 1988, 29, 3423–3426.
6. Bernardi, A.; Checchia, A.; Brocca, P.; Sonnino, S.; Zuccotto, F. J. Am. Chem. Soc. 1999, 121, 2032–2036.
7. Hartmann, H.; Hady, A. F. A.; Sartor, K.; Weetman, J.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 1143–1145.
8. Bernardi, A.; Boschin, G.; Checchia, A.; Lattanzio, M.; Manzoni, L.; Potenza, D.; Scolastico, C. Eur. J. Org. Chem. 1999,
1311–1317.
9. Devine, P. N.; Oh, T. J. Org. Chem. 1992, 57, 396–399.
10. Evans, D. A.; Lectka, T.; Miller, S. J.; Tetrahedron Lett. 1993, 34, 7027–7030.
11. Evans, D. A.; Miller, S. J.; Lectka, T. J. Am. Chem. Soc. 1993, 115, 6460–6461.
12. Hawkins, J.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794–7795.
13. Schneider, M.; Engel, N.; Hoenicke, P.; Heinemann G.; Goerisch, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 67–68.
14. Ito, Y. N.; Ariza, X.; Beck, A. K.; Bohac, A.; Ganter, C.; Gawley, R. E.; Kuehnle, F. N.; Tuleja, J.; Wang, Y.-M.; Seebach,
D. Helv. Chim. Acta 1994, 77, 2071–2110.
15. Bolm, C.; Gerlach, A.; Dinter, C. L. Synlett 1999, 195–196.
16. Parker, D. J. Chem. Soc., Perkin Trans. 2 1983, 83–88.