ester 16 using Lombardo’s procedure7 employing titanium
tetrachloride, zinc and methylene bromide. The ester 16 was
found to be identical (TLC, IR, 1H and 13C NMR spectra) with
the authentic sample,4 thus constituting a formal total syn-
thesis of ( )-β-microbiotene 5, ( )-microbiotol 3 and ( )-
cyclocuparanol 2.
In conclusion, we have developed a short and efficient regio-
selective approach to the C-6 to C-19 fragment of the marine
diterpenoids bifurcaranes employing an epoxide rearrange-
ment based ring contraction as the key step to generate the
vicinal quaternary carbon atoms in a regiospecific manner,
and extended it to the formal total synthesis of cyclocuparanes
β-microbiotene, microbiotol and cyclocuparanol. The brev-
ity and efficiency highlights the importance of the present
sequence.
Acknowledgements
We thank the C.S.I.R., New Delhi for financial support.
Notes and references
† All the compounds exhibited spectral data consistent with their struc-
ture. IR and NMR spectral data for the keto alcohol 10: νmax/cmϪ1 3430,
1665, 1610. δH (300 MHz, CDCl3 ϩ CCl4) 6.84 (1 H, d, J 15.3 Hz, H-3),
6.62 (1 H, d, J 15.3 Hz, H-2), 2.45 (1 H, m), 1.70–1.40 (6 H, m), 1.37
(6 H, s), 1.16 (3 H, s), 1.09 (3 H, s), 0.84 (3 H, s). δC (75 MHz,
CDCl3ϩCCl4) 203.8 (C), 151.7 (CH), 122.7 (CH), 71.1 (C), 59.0 (C),
44.0 (C), 40.6 (CH2), 34.5 (CH2), 29.7 (2 C, CH3), 25.6 (CH3), 24.7
(CH3), 20.7 (CH3), 19.7 (CH2). For the epoxide 12: νmax/cmϪ1 1720,
1650. δH (300 MHz, CDCl3 ϩ CCl4) 7.11 (1 H, d, J 15.3 Hz), 5.95 (1 H,
d, J 15.3 Hz), 3.72 (3 H, s), 1.90–1.65 (2 H, m), 1.50–1.20 (4 H, m), 1.13
(6 H, s), 0.91 (3 H, s). δC (75 MHz, CDCl3 ϩ CCl4) 166.3 (C), 144.4
(CH), 123.9 (CH), 70.4 (C), 65.5 (C), 51.5 (CH3), 35.7 (CH2), 33.6 (C),
30.0 (CH2), 26.1 (CH3), 26.0 (CH3), 20.9 (CH3), 17.1 (CH2). For keto
ester 14: νmax/cmϪ11730, 1690, 1630, 980. δH (300 MHz, CDCl3) 7.39
(1 H, d, J 15.5 Hz), 6.66 (1 H, d, J 15.5 Hz), 3.80 (3 H, s), 2.50–2.35
(1 H, m), 1.80–1.40 (5 H, m), 1.20 (3 H, s), 1.10 (3 H, s), 0.86 (3 H,
s). δC (75 MHz, CDCl3 ϩ CCl4) 202.4 (C), 165.8 (C), 137.6 (CH), 129.8
(CH), 59.1 (C), 51.9 (CH3), 44.3 (C), 40.4 (CH2), 34.3 (CH2), 25.4
(CH3), 24.6 (CH3), 20.2 (CH3), 19.7 (CH2).
Scheme 1 Reagents, conditions and yields: (a) MCPBA, NaHCO3,
CH2Cl2, 0 ЊC, 3 h, 90%; (b) BF3ؒEt2O, CH2Cl2, Ϫ78 ЊC, 1 h, 94%; (c) H2,
10% Pd–C, EtOH, 12 h, 100%; (d) MeMgI, Et2O, 5 min, 65% for 10 and
81% for 11.
1 (a) H. H. Sun, N. M. Ferrara, O. J. McConnel and W. Fenical, Tetra-
hedron Lett., 1980, 21, 3123; (b) V. Amico, F. Cunsolo, M. Piattelli
and G. Ruberto, Phytochemistry, 1984, 23, 2017; (c) V. Amico,
F. Cunsolo, M. Piattelli and G. Ruberto, Phytochemistry, 1985, 24,
1047; (d) V. Amico, G. Oriente, P. Neri, M. Piattelli and G. Ruberto,
Phytochemistry, 1987, 26, 1715; (e) A. Bennamara, A. Abourriche,
M. Berrada, M. Charrouf, N. Chaib, M. Boudouma and F. X.
Garneau, Phytochemistry, 1999, 52, 37.
2 So far there is only one approach reported for the synthesis of
bifurcaranes, see: K. Mori and T. Uno, Tetrahedron, 1989, 45, 1945;
K. Mori, T. Uno and M. Kido, Tetrahedron, 1990, 46, 4193.
3 Y. Asakawa, M. Toyota, H. Bischler, E. O. Campbell and S. Hattori,
J. Hattori Bot. Lab., 1984, 57, 383; Y. Asakawa, M. Tori, T. Masuya
and J. -P. Grahm, Phytochemistry, 1990, 29, 1577; D. S. Rycroft and
W. J. Cole, J. Chem. Res. (S), 1998, 600; V. A. Raldugin, V. G. Storo-
zhenko, A. I. Resvukhin, V. A. Pentegova, P. G. Gorovoj and V. I.
Baranov, Khim. Prir. Soedin., 1981, 163; A. V. Tkachev, M. M. Shaki-
rov and V. A. Raldugin, J. Nat. Prod., 1991, 54, 849; S. Melching,
A. Blume, W. A. Konig and H. Muhle, Phytochemistry, 1998, 48, 661.
4 So far there is only one approach reported for the synthesis of
cyclocuparanes, see: A. Srikrishna and D. B. Ramachary, Tetrahedron
Lett., 1999, 40, 6669.
Scheme 2 Reagents, conditions and yields: (a) NaOH, Br2, dioxane,
0 ЊC, 2 h; MeOH, H2SO4, reflux, 5 h; 95%; (b) MCPBA, NaHCO3,
CH2Cl2, 0 ЊC, 2 h, 98%; (c) BF3ؒEt2O, CH2Cl2, Ϫ78 ЊC, 1 h, 90%; (d) H2,
10% Pd–C, EtOH, 12 h, 100%; (e) TiCl4, CH2Br2, Zn, CH2Cl2, 0 ЊC, 2 h,
60%; (f) ref. 4.
5 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1998,
2569.
6 B. Frei, H. Eichenberger, B. v. Wartburg, H. R. Wolf and O. Jeger,
Helv. Chim. Acta, 1977, 60, 2968.
7 L. Lombardo, Tetrahedron Lett., 1982, 23, 4293; S. H. Pine, in
Organic Reactions, ed. L. A. Paquette, 1993, vol. 43, pp. 1.
of the diazo ketone derived from the keto ester 16 followed by
addition of the fifteenth carbon to the resulting norcyclo-
cuparanone 17. Since conventional Wittig methylenation was
not successful, the keto ester 15 was transformed into the ene
Communication 9/08033C
3394
J. Chem. Soc., Perkin Trans. 1, 1999, 3393–3394