3198
Organometallics 1996, 15, 3198-3203
Ma r k ed Ch a n ges in Rela tive Nu cleop h ilicity in
Com p a r in g SN2Ar Rea ction s of F r ee Ar en es a n d
Coor d in a ted Ar en es. Kin etic Stu d ies of Rea ction s of
(η6-Ch lor oben zen e)(η5-cyclop en ta d ien yl)ir on (II)
Tetr a flu or obor a te w ith An ion ic a n d Neu tr a l
Nu cleop h iles
Paulo C. B. Gomes, Eduardo J . S. Vichi,* Paulo J . S. Moran,
Alberto Federman Neto,† Maria Lourdes Maroso, and J oseph Miller*,‡
Instituto de Quimica, Universidade Estadual de Campinas, CP 6154,
13083-970 Campinas SP, Brazil
Received March 7, 1996X
Quantitative kinetic studies have been made of reactions of the (η6-chlorobenzene)(η5-
cyclopentadienyl)iron(II) cation, (C6H5Cl)Fe(C5H5)+ (1), with methoxide, phenoxide, meth-
anethiolate, benzenethiolate, and azide ions in methanol, piperidine, morpholine, aniline,
and thiourea in methanol, and guanidine in ethanol. The results were compared with the
same nucleophile-solvent combinations in reactions with 1-chloro-2,4-dinitrobenzene,
C6H3(NO2)2Cl (2). In general, the reactivity decreases on passing from 2 to 1. The decrease
is small (e10-1) for phenoxide (PhO-), methanethiolate (MeS-), and guanidine (gua) and
large (ca. 10-5 ) for benzenethiolate (PhS-), azide (N3-), piperidine (pip), morpholine (morph),
aniline (anil), and thiourea (thiou). The differences in reactivity when comparing the SN-
2Ar reactions of 1 and 2 is discussed in terms of the different location of the negative charge
generated in the transition state by the electrons displaced from the reaction center by the
entering groups (arenide electrons).
In tr od u ction
The greater activating power of the [(η5-C5H5)Fe]+
4a
moiety5b compared with Cr(CO)3 includes a significant
Nucleophilic substitution reactions in halogenoarene
transition metal complexes have gained synthetic im-
portance in organic chemistry1 because the parent
organic molecules are virtually inert to nucleophiles
under normal conditions.2 The report by Nicholls and
Whiting3 that the Cr(CO)3 moiety of (η6-chlorobenzene)-
tricarbonylchromium activates methoxy dechlorination
led to the publication of many papers on SN2Ar reactions
activated by arene complexation to a transition metal.
These papers reported kinetic studies and synthetic
applications of halogenoarenes coordinated to transition
metal-ligand residues, such as Cr(CO)3,4 [(η5-C5H5)-
Fe]+,5 [(η5-C5H5)Ru]+,6 and [(CO)3Mn]+.7
It was established that π-coordination to Cr(CO)3
activates the halogenoarene ligand toward methoxide
to an extent similar in magnitude to the effect of a
4-nitro substituent,4a-c although different mechanisms
of electron withdrawal have been suggested for the two
systems.4e The effect of π-complexation with [(η5-
C5H5)Fe]+,5b [(CO)3Mn]+,7c and [(η5-C5H5)Ru]+ 6c is even
more marked; the effect of the [(η5-C5H5)Fe]+ moiety is
equivalent to that of o- and p-nitro groups combined.
entropic contribution, since the reaction of methoxide
with the iron(II) salt is between an anion and a cation.
In view of the interest in these SN2Ar reactions8 we
have studied the kinetics of the reactions of 1 with a
varied range of nucleophiles. In this paper we report
(4) (a) Brown, D. A.; Raju, J . R. J . Chem. Soc. A 1966, 40. (b)
Bunnett, J . F.; Herrmann, H. J . Org. Chem. 1971, 36, 4081. (c)
Tchissambon, L.; J ouen, G.; Dabard, R. C. R. Seances Acaad. Sci. 1972,
274C, 654, 806. (d) Semmelhack, M. F.; Hall, H. T. J . Am. Chem. Soc.
1974, 96, 7091, 7092. (e) Kreindlin, A. Z.; Khandarova, U. S.; Gubin,
S. P. J . Organomet. Chem. 1975, 92, 197. (f) Mahaffy, C. A. L.; Pauson,
P. L. J . Chem. Res., Synop. 1979, 128; J . Chem. Res., Miniprint 1979,
1773. (g) Semmelhack, M. F.; Clarck, G. R.; Garcia, J . L.; Harrison,
J .J .; Thebteraronth, Y.; Yamashita, A. Tetrahedron 1981, 37, 3959.
(h) Ostrowiski, S.; Mokoska, M. J . Organomet. Chem. 1989, 367, 95.
(5) (a) Nesmeyanov, A. N.; Vol’kenau, N. A.; Bolesova, I. N. Dokl.
Acad. Nauk SSSR 1967, 175, 106, 606. (b) Nesmeyanov, A. N.;
Vol’kenau, N. A.; Isaeva, L. S.; Bolesova, I. N. Dokl. Acad. Nauk SSSR
1968, 183, 184 and earlier papers cited therein. (c) Helling, J . F.;
Hendrickson, W. A. J . Organomet. Chem. 1979, 168, 87. (d) Khand, I.
V.; Pauson, P. L.; Watts, W. F. J . Chem. Soc. C 1969, 2024. (e) Lee, C.
C.; Azogu, C. I.; Chang, P. C.; Sutherland, R. G. J . Organomet. Chem.
1981, 220, 181. (f) Lee, C. C.; Gill, U. S.; Iqbal, M.; Azogu, C. I.;
Sutherland, R. G. J . Organomet. Chem. 1982, 231, 151. (g) Astruc, D.
Tetrahedron 1983, 39, 4027. (h) Moriarty, R. M.; Gill, U. S. Organo-
metallics 1986, 5, 253. (i) Lee, C. C.; Abd-el-Aziz, A. S.; Chowdhury,
R. L.; Gill, U. S.; Piorko, A.; Sutherland, R. G. J . Organomet. Chem.
1986, 315, 79. Sutherland, R. G.; Choudhury, R. L.; Piorko, A.; Lee, C.
C. Can. J . Chem. 1986, 64, 2031. (j) Terrier, F.; Vichard, D.; Cha-
trousse, A. P.; Top, S.; McGlinchey, M. J . Organometallics 1994, 13,
690.
(6) a) Sagall, J . A. J . Chem. Soc., Chem. Commun. 1985, 1338. (b)
Vol’kenau, N. A.; Bolesova, I. N.; Shulpina, L. S.; Kitaigorodskii, A.
N.; Kravtsov, D. N. J . Organomet. Chem. 1985, 288, 341. (c) Moriarty,
R. M.; Gill, U. S.; Ku, Y. Y. J . Organomet. Chem. 1988, 350, 157. (d)
Moriarty, R. M.; Ku, Y. Y.; Gill, U. S. Organometallics 1988, 7, 660.
(7) a) Walker, P. J . C.; Mawby, R. J . Inorg. Chem. 1971, 10, 404; J .
Chem. Soc., Dalton Trans. 1973, 622. (b) Pauson, P. L.; Segal, J . A. J .
Chem. Soc., Dalton Trans. 1975, 1677, 1683. (c) Knipe, A. C.; Guiness,
S. J .; Watts, W. E. J . Chem. Soc., Perkin Trans. 2 1981, 193. (d) Bhasin,
K. K.; Balkeen, W. G.; Pauson, P. L. J . Organomet. Chem. 1981, 204,
C25.
† Present address: Faculdade de Cieˆncias Farmaceuticas, Univer-
sidade de Sa˜o Paulo, 14040-900 Ribeira˜o Preto, SP, Brazil.
‡ Present address: Laborato´rio de Tecnologia Farmaceutica e De-
partamento de Qu´ımica/CCEN, Universidade Federal da Paraiba, CP
5009, 58051-970 J oa˜o Pessoa, Pb, Brazil.
X Abstract published in Advance ACS Abstracts, J une 1, 1996.
(1) See: (a) Semmelhack, M. F. J . Organomet. Chem. 1961, 1, 36.
(b) J ouen, G. In Transition Metal Organometallics in Organic Synthe-
sis; Alper, H., Ed.; Academic Press: New York, 1978; Vol. II, Chapter
2, and references therein.
(2) Miller, J . Aromatic Nucleophilic Substitution; Elsevier: Amster-
dam, London, and New York, 1968.
(3) Nicholls, B.; Whiting, M. C. J . Chem. Soc. 1956, 551.
S0276-7333(96)00181-1 CCC: $12.00 © 1996 American Chemical Society