Cristiano et al.
JOCArticle
and reagents with the halogen atoms as part of a larger spe-
cies.4,8-11
SCHEME 1. Preparation of Tetraalkylphosphonium Trihalide
Salts, mPnXY2
In that regard, the high polarity of ionic liquids makes
them interesting media in which to conduct and investigate
the selectivity and reactivity of ionic halogenation reactions,
such as the aforementioned addition and substitution reac-
tions.12 Also, ionic liquids avoid many of the problems
associated with the volatility of common organic media,
and many ionic liquids can be separated easily from products
and/or catalysts and reused.13 Another approach to media-
ting the selectivity and reactivity of halogenations involves
to examine the role of the cation and anion structures on the
kinetics of the reactions, the stability of the reaction inter-
mediates, and, thus, the reactivity and selectivity of the
substrates.
-
using trihalide anions, XY2 (X, Y = Cl, Br, I), as the
halogen reagent,11 and studies that combine trihalide ions
and ionic liquids as the medium have been conducted.11e
Finally, the trihalide anion has been made a part of ionic
liquids so that the solvent alone is an efficient halogenating
material.14 For example, halogenations in salts of tetraalk-
ylammonium15 and imidazolium16 trihalides have been used
As part of our continuing studies of phase properties and
uses of phosphonium salts,17 we developed recently an ionic
liquid, tridecylmethylphosphonium tribromide (1P10Br3),
that functions as a brominating reagent in a stacked, “phase-
vanishing”18 reactor that exploits the diffusion of molecular
bromine and the densities and immiscibilities of bromine,
a fluorous liquid, the ionic liquid, and alkane/substrate
layers.14a Our use of phosphonium rather than ammonium
or imidazolium salts is motivated by the fact that Pþ has a
larger size, a greater polarizability, and a lower binding
energy with anions than Nþ 17 and the phosphonium salts
are structurally simpler molecules than the imidazolium
salts. These attributes make phosphonium salts attractive
and interesting alternative halogenation reagents.
Here, we describe the preparation of six room temperature
ionic liquids, mPnXY2 (Scheme 1), made from combinations
of two tetraalkylphosphonium cations (tridecylmethyphos-
phonium and trihexyltetradecylphosphonium) and three tri-
halide anions (Br3-, BrCl2-, and ClBr2-) and theiruse as both
solvents and halogenation reagents for bromination and
bromo-chlorination reactions with unsaturated substrates.
Both the regio- and stereoselectivities of these reactions with
a wide variety of substrates and the influence on these para-
meters of different aliphatic chains of the mPnXY2 are dis-
cussed. It is shown that the reactions proceed in high yields
and selectivities under mild conditions and that the nature of
the mixed halogenations can be controlled somewhat.
(8) For bromination reactions involving Br2: (a) Rajasingh, P.; Cohen,
R.; Shirman, E.; Shimon, L. J. W.; Rybtchinski, B. J. Org. Chem. 2007, 72,
5973–5979. (b) Suresh, P.; Annalakshmi, S.; Pitchumani, K. Tetrahedron
2007, 63, 4959–4967. (c) Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.;
O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.;
Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506–2511. (d) Das, J. P.; Say, S.
J. Org. Chem. 2002, 67, 7861–7864. (e) Adimurthy, S.; Ramachandraiah, G.;
Bedekar, A. V.; Ghosh, S.; Ranu, B. C.; Ghosh, P. K. Green Chem. 2006, 8,
916–922. (f) Nair, V.; Panicker, S. B.; Augustine, T.; George, T. G.; Thomas,
S.; Vairamani, M. Tetrahedron 2001, 57, 7417–7422.
(9) For asymmetric halogenations involving dihalogens: (a) Li, K. Y.;
Alexakis, A. Tetrahedron Lett. 2005, 46, 5823–5826. (b) Goswarni, P.;
Baruah, A.; Das, B. Adv. Synth. Catal. 2009, 351, 1483–1487. (c) Ueda,
M.; Kano, T.; Maruoka, K. Org. Biomol. Chem. 2009, 7, 2005–2012. For
chlorination reactions: (d) Murphy, C. D. Nat. Prod. Rep. 2006, 23, 147–152.
(e) Masilamani, D.; Rogic, M. M. J. Org. Chem. 1981, 46, 4486–4489.
(f) Moreno-Dorado, F. J.; Guerra, F. M.; Manzano, F. L.; Aladro, F. J.;
Jorge, Z. D.; Massanet, G. M. Tetrahedron Lett. 2003, 44, 6691–6693.
(g) Hajra, S.; Bhowmick, M.; Maji, B.; Sinha, D. J. Org. Chem. 2007, 72,
4872–4876. (h) Frings, M.; Bolm, C. Eur. J. Org. Chem. 2009, 4085–4090.
(i) Chen, J. S.; Takenaka, N. Chem.;Eur. J. 2009, 15, 7268–7276.
(10) For iodination and fluorination reactions involving dihalogens:
(a) Brazdil, L. C.; Cutler, C. J. J. Org. Chem. 1996, 61, 9621–9622. (b) Beeson,
T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826–8828.
(11) For halogenation reactions involving trihalide anions: (a) Zolfigol,
M. A.; Chehardoli, G.; Salehzadeh, S.; Adams, H.; Ward, M. D. Tetrahedron
Lett. 2007, 48, 7969–7973. (b) Bose, G.; Mondal, E.; Khan, A. T.; Bordoloi,
M. J. Tetrahedron Lett. 2001, 42, 8907–8909. (c) Kavala, V.; Naik, S.; Patel,
B. K. J. Org. Chem. 2005, 70, 4267–4271. (d) Hajipour, A. R.; Arbabian, M.;
Ruoho, A. E. J. Org. Chem. 2002, 67, 8622–8624. (e) Chiappe, C.; Pieraccini,
D. J. Org. Chem. 2004, 69, 6059–6064. (f) Bianchini, R.; Chiappe, C. J. Org.
Chem. 1992, 57, 6474–6478. (g) Giordano, C.; Coppi, L. J. Org. Chem. 1992,
57, 2765–2766. (h) Bianchini, R.; Chiappe, C.; Lo Moro, G.; Lenoir, D.;
Lemmen, P.; Goldberg, N. Chem.;Eur. J. 1999, 5, 1570–1580. (i) Smith, K.;
James, D. M.; Matthews, I.; Bye, M. R. J. Chem. Soc., Perkin Trans. 1 1992,
1877–1878.
(12) (a) Chiappe, C.; Pieraccini, D.; Pomelli, C. S. Ionic Liquids in Organic
Synthesis; Malhotra, S. V., Ed.; ACS Symp. Ser. No. 950; American Chemical
Society: Washington, DC, 2007; Chapter 1. (b) Pavlinac, J.; Zupan, M.; Laali,
K. K.; Stavber, S. Tetrahedron 2009, 65, 5625–5662.
(13) (a) Abedin, S. Z. E.; Endres, F. Acc. Chem. Res. 2007, 40, 1106–1113.
(b) Rogers, R. D.; Voth, G. A. Acc. Chem. Res. 2007, 40, 1077–1078. (c) Ionic
Liquids III: Fundamentals, Progress, Challenges, and Opportunities; Rogers,
R. D., Seddon, K. R., Eds.; ACS Symp. Ser. Nos. 901-902; American Chemical
Society: Washington, DC, 2005. (d) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z.
Chem. Rev. 2002, 102, 3667–3692.
(14) Halogenation reactions involving trihalide ionic liquids: (a) Ma, K.;
Li, S.; Weiss, R. G. Org. Lett. 2008, 10, 4155–4158. (b) Chiappe, C.; Leandri,
E.; Pieraccini, D. Chem. Commun. 2004, 2536–2537. (c) Borikar, S. P.;
Daniel, T.; Paul, V. Tetrahedron Lett. 2009, 50, 1007–1009. (d) Salazar, J.;
Dorta, R. Synlett 2004, 7, 1318–1320. (e) Bortolini, O.; Bottai, M.; Chiappe,
C.; Conte, V.; Pieraccini, D. Green Chem. 2002, 4, 621–627. (f) Kessat, A.;
Babadjamian, A. Eur. Polym. J. 1996, 32, 193–199. (g) Cristiano, R.; Walls,
A. D.; Weiss, R. G. To be submitted for publication.
Results and Discussion
Synthesis and Characterization of Phosphonium Trihalides.
The mPnXY2 were prepared as shown in Scheme 1. Trihalide
(17) (a) Abdallah, D. J.; Bachman, R. E.; Perlstein, J.; Weiss, R. G.
J. Phys. Chem. B 1999, 103, 9269–9278. (b) Abdallah, D. J.; Robertson, A.;
Hsu, H.-F; Weiss, R. G. J. Am. Chem. Soc. 2000, 122, 3053–3062.
(c) Abdallah, D. J.; Weiss, R. G. Chem. Mater. 2000, 12, 406–413.
(d) Abdallah, D. J.; Lu, L.; Cocker, M. T.; Bachman, R. E.; Weiss, R. G.
€
Liq. Cryst. 2000, 27, 831–837. (e) Hui, C.; Kwait, D. C.; Gonen, Z. S.;
Weslowski, B. T.; Abdallah, D. J.; Weiss, R. G Chem. Mater. 2002, 14, 4063–
4072. (f) Abdallah, D. J.; Wauters, H. C.; Kwait, D. C.; Khetrapal, C. L.; Nagana
Gowda, G. A.; Robertson, A.; Weiss, R. G. Ionic Liquids IIIB: Fundamental,
Progress, Challenges and Opportunities; Rogers, R. D., Seddon, K. R., Eds.;
ACS Symp. Ser. No. 902; American Chemical Society: Washington, DC, 2005;
Chapter 21. (g) Ma, K.; Somashekhar, B. S.; Nagana Gowda, G. A.; Khetrapal,
C. L.; Weiss, R. G. Langmuir 2008, 24, 2746–2758. (h) Ma, K.; Lee, K.-M.;
Minkova, L.; Weiss, R. G. J. Org. Chem. 2009, 74, 2088–2098. (i) Shahkhatuni,
A. A.; Ma, K.; Weiss, R. G. J. Phys. Chem. B 2009, 113, 4209–4217. (j) Ma, K.;
Shahkhatuni, A. A.; Somashekhar, B. S.; Nagana Gowda, G. A.; Tong, Y.;
Khetrapal, C. L.; Weiss, R. G. Langmuir 2008, 24, 9843–9854.
(15) Bora, U.; Chaudhuri, M. K.; Dey, D.; Dhar, S. S. Pure Appl. Chem.
2001, 73, 93–102.
(18) (a) Ryu, I.; Matsubara, H.; Yasuda, S.; Nakamura, H.; Curran, D. P.
J. Am. Chem. Soc. 2002, 124, 12946–12947. (b) Rahman, M. T.; Kamata, N.;
Matsubara, H.; Ryu, I. Synlett 2005, 2664–2666. (c) Jana, N. K.; Verkade,
J. G. Org. Lett. 2003, 5, 3787–3790.
(16) (a) Chiappe, C.; Conte, V.; Pieraccini, D. Eur. J. Chem. 2002, 16,
2831–2837. (b) Chiappe, C.; Pieraccini, D. J. Org. Chem. 2004, 69, 6059–
6064.
9028 J. Org. Chem. Vol. 74, No. 23, 2009