C O M M U N I C A T I O N S
trimethylsilyl benzaldimine17 delivers 3a (R ) Ph) in 85% yield,
possibly through the intermediacy of a trichlorotitanium imine.18,19
Finally, while we have no direct information regarding the transition
state of these reactions, Figure 1b depicts a simple model for
rationalizing the observed anti stereochemistry.
Acknowledgment. We are grateful to Dr. Kenneth Hardcastle
(Emory University) for determining the X-ray structures of
compounds 3 and 5.
Supporting Information Available: Synthetic details, as well as
the X-ray structures for 3 and 5, R ) Ph (CIF and PDF). This material
Scheme 3
References
(1) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.;
Bartroli, J. Pure Appl. Chem. 1981, 53, 1109. Evans, D. A.; Nelson, J.
V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3008. Evans,
D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am.
Chem. Soc. 1990, 112, 866. Evans, D. A.; Kaldor, S. W.; Jones, T. K.;
Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001. Evans, D. A.;
Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434.
(2) Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990, 55,
173. Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747.
(3) Fujita, E.; Nagao, Y. AdV. Heterocycl. Chem. 1989, 45, 1. Garcia-
Ferna´ndez, J. M.; Ortiz-Mellet, C.; Fuentes, J. J. Org. Chem. 1993, 58,
5192. Nagao, Y.; Kumagai, T.; Nagase, Y.; Tamai, S.; Inoue, Y.; Shiro,
M. J. Org. Chem. 1992, 57, 4232.
(4) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Am. Chem.
Soc. 1997, 119, 9 (33), 7883. Crimmins, M. T.; Chaudhary, K. Org. Lett.
2000, 2, 775. Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary,
K. J. Org. Chem. 2001, 66, 894.
(5) For a review: Cherry, P. C.; Newall, C. E. In Chemistry and Biology of
â-Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic: New
York, 1982; Vol. 2, p 361. Maryanoff, B. E.; Greco, M. N.; Zhang, H.
C.; Andrade-Gordon, P.; Kaufman, J. A.; Nicolaou, K. C.; Liu, A.; Grugs,
P. H. J. Am. Chem. Soc. 1995, 117, 1225.
(6) Chan, T. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon Press: Oxford, 1991; Vol. 4, Chapter 2, p 595. Gennari,
C.; Schimperna, G.; Kenturini, I. Tetrahedron 1988, 44, 4221. Gennari,
C.; Venturini, I.; Gilson, G.; Schimperna, G. Tetrahedron Lett. 1987, 28,
227. Gennari, C.; Cozzi, P. G. J. Org. Chem. 1988, 53, 4015. Ojima, I.;
Inaba, S.-I.; Yoshida, K. Tetrahedron Lett. 1977, 41, 3643. Juaristi, E.;
Quintana, D.; Escalante, J. Aldrichimica Acta 1994, 27, 3 and the
references therein.
(7) Ferstl, E. M.; Venkatesan, H.; Ambhaikar, N. B.; Snyder, J. P.; Liotta, D.
C. Synthesis 2002, 14, 2075.
(8) Chemla, F.; Hebbe, V.; Normant, J. Synthesis 2000, 1, 75.
(9) Klienman, E. F. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, Chapter 3, p
893.
“Hydrolytic” opening of azetinyl thiazolidine-2-thiones that
produce the corresponding R,â-disubstituted â-amino carbonyl
compounds is, to our knowledge, unprecedented. Initial attempts
involving simple acid/base-catalyzed hydrolysis led to the formation
of complex product mixtures. We speculated that a successful
approach would proceed by selective generation of a reactive
iminium salt20 followed by subsequent hydrolysis. Preliminary
attempts at N-alkylations involving the use of either MeI or Me3-
OBF4 failed apparently because of competition from the nucleo-
philic sulfur in the thiazolidine-2-thione. However, azetines 3 could
be successfully converted to the corresponding N-acyl â-amino
carbonyl compounds 5 by simple exposure to benzoyl chloride,
followed by stirring at room temperature in air (Table 2 and Scheme
4). These reactions presumably involve the formation of an acyl
iminium cation intermediate, followed by a subsequent hydrolysis.
In our hands, benzoyl chloride was found to be superior to other
commonly used acylating agents. The retained absolute stereo-
chemistry of the “anti” â-amino carbonyl compound was confirmed
by X-ray crystallographic analyses of 5a (R ) Ph, see Supporting
Information).
(10) Volkmann, R. A. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, Chapter 1, p
355.
(11) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069.
(12) Kolasa, T.; Sharma, S. K.; Miller, M. J. Tetrahedron Lett. 1987, 28, 4973.
Kolasa, T.; Sharma, S. K.; Miller, M. J. Tetrahedron 1988, 44, 5431.
Uno, H.; Terakawa, T.; Suzuki, H. Synlett 1991, 559. Gallagher, P. T.;
Lightfoot, A. P.; Moody, C. J.; Slawin, A. M. Z. Synlett 1995, 5, 445.
Brown, D. S.; Gallagher, P. T.; Lightfoot, A. P.; Moody, C. J.; Slawin,
A. M. Z.; Swann, E. Tetrahedron 1995, 51, 11473.
Scheme 4
(13) For some representative articles on the subject, see: Rodrigues, K. E.;
Basha, A.; Summers, J. B.; Brooks, D. W. Tetrahedron Lett. 1988, 29,
3455. Ekhato, I. V.; Robinson, C. H. J. Chem. Soc., Perkin Trans. 1 1988,
12, 3239. Muir, G.; Jones, R. L.; Will, S. G.; Winwick, T.; Peesapati, V.;
Wilson, N. H.; Griffiths, N.; Nicholson, W. V.; Taylor, P.; Sawyer, L.;
Blake, A. J. Eur. J. Med. Chem. 1993, 28, 609. Ikeda, K.; Achiwa, K.;
Sekiya, M. Chem. Pharm. Bull. 1989, 37, 7(5), 1179. Seno, K.; Sanji, H.
Chem. Pharm. Bull. 1989, 37(6), 1524.
Table 2. Hydrolytic Opening of Azetines 3 To Give 516
R
yield (%)
phenyl
1-naphthyl
2-thienyl
2-phenylethyl
cyclohexyl
78
(14) Itsuno, S.; Miyazaki, K.; Ito, K. Tetrahedron Lett. 1986, 27, 3033.
(15) Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto,
K.; Fujita, E. J. Org. Chem. 1986, 51, 2391.
5921
6021
44
(16) (i) 1H NMR was employed to determine the presence and the ratio of
diastereoisomers. While none of the other diastereomer was detected in
any of the reactions listed in Scheme 2, a minor byproduct, 4, was detected,
which provides interesting insight into the mechanistic pathway involved.
(ii) In the reactions involving oxime ethers with R ) phenyl, 2-phenylethyl,
and cyclohexyl, none of the minor product 4 was observed after 12 h.
(17) Cainelli, G.; Panunzio, M. Tetrahedron Lett. 1991, 32, 121.
(18) Panunzio, M.; Zarantonello, P. Org. Process Res. DeV. 1998, 2, 49.
(19) Conversion of 1 to a trichlorotitanium imine requires reduction of the
N-O bond, presumably by titanium tetrachloride. Studies aimed at
elucidating the mechanism of this conversion are underway.
(20) Iminium ion and acyl iminium ion chemistry: Speckamp, W. N.; Hiemstra,
H. Tetrahedron 1985, 41, 4416. Speckamp, W. N.; Moolenaar, M. J.
Tetrahedron 2000, 56, 381.
38
In summary, we have discovered a novel and highly diastereo-
selective synthesis of azetinyl thiazolidine-2-thiones that utilizes
additions of the chlorotitanium enolates of N-acyl thiazolidin-2-
thiones to O-methyl aldoximes. The “anti” azetines can be
subsequently converted to the corresponding â-amino carbonyl
compounds with retention of stereochemistry. While elucidating
the full scope and limitations of these additions will require
additional study, this approach has excellent potential for becoming
a general method for synthesizing a wide variety of R,â-disubsti-
tuted â-amino carbonyl derivatives.
(21) On the basis of preliminary analyses of crude reaction mixtures, these
reactions may result in low levels (<10%) of epimerization.
JA029871U
9
J. AM. CHEM. SOC. VOL. 125, NO. 13, 2003 3691