20
stituted cyclohexanones 11 {[a]D = 21.7 (c 1.1, CHCl3)}
The stereoselective reductions of ketone 3b on the now most
stable conformation B, which avoids severe interactions
between R1 = Me and the equatorial (p-tolylsulfonyl)methyl
substituent present in conformation A (Scheme 1), afforded
20
and 12 {[a]D = 24.5 (c 1.1, CHCl3)} in enantiomerically
pure form, as determined after desilylation into the correspond-
ing carbinols.§
carbinols 7 (
L
-Selectride, 95% equatorial attack) and 8 (NaBH4,
In summary, the enantiopure b-hydroxysulfoxide moiety can
be considered as a chiral cyclic ketone equivalent which can be
recovered after oxidation to a sulfone and mild basic treatment.
An additional advantage of the b-hydroxysulfone as carbonyl
protecting group in cyclic systems is that further transforma-
tions on such rigid systems occur in a stereocontrolled manner.
Moreover, both the a-hydroxysulfoxides and the corresponding
sulfones are very stable and can be easily handled and purified
either by chromatography or crystallization. We are now
applying this new efficient methodology to the total enantiose-
lective synthesis of several natural products.
CeCl3, 80% axial attack), whose treatment with Cs2CO3 (entries
2 and 3, respectively) allowed us to obtain in enantiomerically
20
pure form§ both enantiomers of 9, {[a]D = +48 (c 2, EtOH)
and 244 (c 0.2, EtOH)}, known as Phorenol, a synthetic
intermediate used for the enantioselective syntheses of several
natural products.11 Till now, these chiral synthons were mainly
accessible through enzymatic resolutions.12
We then focused our attention on the base-induced elimina-
tion of methyl p-tolylsulfone on cyclohexenones 3b–d en route
to chiral cyclohexenediones (Scheme 1). Stirring sulfone 3b in
CH3CN solution with an excess of Cs2CO3 gave, after flash
chromatography, achiral 4-oxoisophorone 10b (entry 4). The
synthesis of enantiomerically pure¶ oxoisophorone analogues
We thank DGICYT (Grant PB98-0062) and MCYT (Grant
BQU2002-03371) for financial support, MEC for a fellowship
to M. R. and CAM for a fellowship to A. S.
10c13 {[a]D = +0.6 (c 0.6, CHCl3)} and 10d {[a]D = 23.0
(c 0.8, CHCl3)} could be achieved in a similar easy way from
sulfones 3c (entry 5) and 3d (entry 6), respectively.
20
20
In order to know if the driving force for the easy elimination
of methyl p-tolylsulfone was the formation of the conjugated
cyclohexenone or cyclohexenedione fragment, we decided to
explore the synthetic sequence en route to trisubstituted
cyclohexanones 11 and 12 (Scheme 2). The precursors were
obtained as follows. The stereoselective addition of Et3Al on 2a
afforded cyclohexanone 13 as the unique diastereoisomer with
the R absolute configuration at the new chiral center.8 m-CPBA
oxidation of sulfoxide 13 gave sulfone 14 which was ster-
Notes and references
‡ b-Hydroxy sulfoximines have been used to resolve chiral racemic cyclic
ketones.9
§ The optical purity was determined from the Mosher’s esters.10
¶ The optical purity for 10c,d was determined after reduction at C-4 using
NaBH4–CeCl3 and formation of the Mosher’s esters.10
1 Reviews: T. Hudlicky and M. Cebulak, Cyclitols and Their Derivatives.
A Handbook of Physical, Spectral, and Synthetic Data, VCH, New
York, 1993; L. Agrofoglio, E. Suhas, A. Farese, R. Condom, S. R.
Challand, R. A. Earl and R. Guedj, Tetrahedron, 1994, 50, 10611; T.
Hudlicky, D. A. Entwistle, K. Pitzer and A. J. Thorpe, Chem. Rev., 1996,
96, 1195; Recent reference: S. E. De Sousa, P. O’Brien and C. D.
Pilgram, Tetrahedron Lett., 2001, 42, 8081.
2 Reviews: M. T. Crimmins, Tetrahedron, 1998, 54, 9229; A. Berecibar,
C. Grandjean and A. Siriwardena, Chem. Rev., 1999, 99, 779.
3 Recent reference: G. P.-J. Hareau, M. Koiwa, S. Hikichi and F. Sato, J.
Am. Chem. Soc., 1999, 121, 3640 and references therein.
4 Reviews: A. Alexakis and P. Mangeney, Tetrahedron: Asymmetry,
1990, 1, 477; B. C. Rossiter and N. M. Swingle, Chem. Rev., 1992, 92,
771; Recent references: F. Busqué, P. de March, M. Figueredo, J. Font
and S. Rodríguez, Tetrahedron: Asymmetry, 2001, 12, 3077; D. F.
Taber, T. E. Christos, M. Rahimizadeh and B. Chen, J. Org. Chem.,
2001, 66, 5911.
eoselectively reduced to carbinol 15 ( -Selectride, 90% equato-
L
rial attack) or to the epimer 16 (NaBH4, CeCl3, 95% axial
attack). The elimination of methyl p-tolyl sulfone was once
again unsuccessful on free carbinols 15 and 16 and had to be
carried out on the TBDMS protected derivatives 17 and 18.
Simply stirring a CH3CN solution of 17 or 18 with Cs2CO3
(entries 7 and 8) afforded, respectively, the desired trisub-
Table 1 Treatment of cyclic b-hydroxysulfones with Cs2CO3 in CH3CN at
rt
b-Hydroxy Cs2CO3
Yield
(%)
Ee
(%)
Entry sulfone
equiv.
t/h
Cyclic ketone
1
2
3
4
5
6
7
8
5
7
8
3b
3c
3d
17
18
2
3
3
2
2
2
2
2
17
1
0.25
0.3
0.5
0.25
20
6
(4R,6S)-6
(4R)-9
(4S)-9
89
90
93
54
70
68
89
82
> 95
> 95
> 95
—
> 95
> 95
> 95
> 95
5 Review: A. Job, C. F. Janeck, W. Bettray, R. Peters and D. Enders,
Tetrahedron, 2002, 58, , 2253.
6 B. M. Trost, M. L. Crawley and C. Bom Lee, J. Am. Chem. Soc., 2000,
122, 6120.
10b
(6S)-10c
(6R)-10d
(2R,4S,6S)-11
(2R,4R,6S)-12
7 Overview: M. C. Carreño, Chem. Rev., 1995, 95, 1717; Recent work: M.
C. Carreño, A. Urbano and C. Di Vitta, Chem. Eur. J., 2000, 6, 906; M.
C. Carreño, S. García-Cerrada, M. J. Sanz-Cuesta and A. Urbano, Chem.
Commun., 2001, 1452; M. C. Carreño, S. García-Cerrada and A.
Urbano, J. Am. Chem. Soc., 2001, 123, 7929; M. C. Carreño, C. García
Luzón and M. Ribagorda, Chem. Eur. J., 2002, 8, 208; M. C. Carreño,
S. García-Cerrada and A. Urbano, Chem. Commun., 2002, 1412; M. C.
Carreño, M. Ribagorda and G. H. Posner, Angew. Chem., Int. Ed., 2002,
41, 2753; M. C. Carreño, M. Ribagorda, A. Somoza and A. Urbano,
Angew. Chem., Int. Ed., 2002, 41, 2755.
8 M. C. Carreño, M. Pérez González, M. Ribagorda and K. N. Houk, J.
Org. Chem., 1998, 63, 3687.
9 C. R. Johnson and J. R. Zeller, J. Am. Chem. Soc., 1982, 104, 4021.
10 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.
11 Carotenoids: H. Mayer and A. Ruettimann, Helv. Chim. Acta, 1980, 63,
1451; R. Zell, E. Widmer, T. Lukac, H. G. W. Leuenberger, P.
Schoenholzer and E. A. Broger, Helv. Chim. Acta, 1981, 64, 2447; J. A.
Haugan, E. Lobkovsky and S. Liaaen-Jensen, Acta Chem. Scand., 1997,
51, 1201; Abscisic acid: M. Soukup, T. Lukac, B. Lohri and E. Widmer,
Helv. Chim. Acta, 1989, 72, 361; a-ionone: H. Pfander and P. A.
Semadeni, Aust. J. Chem., 1995, 48, 145.
12 H. Kiyota, M. Nakabayashi and T. Oritani, Tetrahedron: Asymmetry,
1999, 10, 3811 and references therein.
Scheme 2 Reagents and conditions: i, m-CPBA, CH2Cl2, rt, 1–2 h, 98%; ii,
13 This derivative has been recently described for the first time, albeit in
racemic form: A. Aponick, R. S. Buzdygon, R. J. Tomko, A. N. Fazal,
E. L. Shughart, D. M. McMaster, M. C. Myers, W. H. Pitcock and C. T.
Wigal, J. Org. Chem., 2002, 67, 242.
L
-Selectride, THF, 278 °C, 2 h, 73%; iii, NaBH4, CeCl3, MeOH, 278 °C,
3–4 h, 75%; iv, TBDMSOTf, 2,6-lutidine, CH2Cl2, 0 °C, 2 h, 81–87%; v,
Cs2CO3, CH3CN, rt.
CHEM. COMMUN., 2002, 3052–3053
3053