Chemistry Letters Vol.32, No.1 (2003)
67
that the approach of the benzylic C–H bond to the Pt center is the
rate-determining step, which is similar to that obtained in the
intramolecular C–H bond activation of [Ir(cod)(PN-
ꢀP:ꢀN)][PF6].3a
ꢀP)3PtMe2, but at present we could not observe the evidence in
the NMR analyses.
This work was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan.
References and Notes
1
2
3
4
For recent reviews: a) C. S. Slone, D. A. Weinberger, and C. A.
Mirkin, Prog. Inorg. Chem., 48, 233 (1999). b) P. Braunstein and F.
Naud, Angew. Chem., Int. Ed., 40, 680 (2001).
‘‘Comprehensive Asymmetric Catalysis,’’ ed. by E. N. Jacobsen, A.
Pfaltz, and H. Yamamoto, Springer-Verlag, Berlin Heidelberg New
York (1999).
a) Y. Kataoka, Y. Imanishi, T. Yamagata, and K. Tani, Organo-
metallics, 18, 3563 (1999). b) Y. Kataoka, K. Shizuma, T.
Yamagata, and K. Tani, Chem. Lett., 2001, 300.
For recent examples: a) R. A. Periana, D. J. Taube, S. Gamble, H.
Taube, T. Satoh, and H. Fujii, Science, 280, 560 (1998). b) K. L.
Bartlett, K. I. Goldberg, and W. T. Borden, J. Am. Chem. Soc., 122,
1456 (2000). c) H. Heiberg, L. Johansson, O. Gropen, O. B. Ryan,
O. Swang, and M. Tilset, J. Am. Chem. Soc., 122, 10831 (2000). d)
L. Johansson, M. Tilset, J. A. Labinger, and J. E. Bercaw, J. Am.
Chem. Soc., 122, 10846 (2000). e) L. Johansson and M. Tilset, J.
Am. Chem. Soc., 123, 739 (2001). f) L. Johansson, O. B. Ryan, C.
Rꢀmming, and M. Tilset, J. Am. Chem. Soc., 123, 6579 (2001). g) H.
A. Zhong, J. A. Labinger, and J. E. Bercaw, J. Am. Chem. Soc., 124,
1378 (2002).
Unexpected C–O bond activation was observed in the
reaction of 3. A toluene solution of 3 was refluxed for 42 h in
the presence of 2 equiv of the PN ligand to afford the C–O bond
cleavage product, cis-(PN-ꢀP)(Ph2PC6H4CH2-ꢀP:ꢀC)PtMe
(cis-5) in 95% along with cis-(PN-ꢀP)(PCN-ꢀP:ꢀC)PtMe (cis-
6) in 5% (Scheme 2).10 The complex cis-6 was confirmed to be a
C–H bond activation product by the separate experiment, in
which the reaction of 4 with the PN ligand under reflux conditions
afforded cis-6 quantitatively after isomerization of intermediate
complex trans-(PN-ꢀP)(PCN-ꢀP:ꢀC)PtMe (trans-6).11 When a
similar reaction was conducted in the absence of additional PN
ligand, the products derived from the C–H bond activation (4 and
cis-6) were obtained mainly (4 : cis-5 : cis-6 ¼ 35 : 36 : 29)
(Scheme 2). The structure of cis-5 was fully characterized by
elemental analysis as well as spectral data. The 31P NMR
spectrum displayed one set of two doublet signals
(2JP-P ¼ 7:8 Hz) with 195Pt satellites (1JPt-P ¼ 1988 and
1880 Hz), indicating the two phosphorus atoms were coordinated
to the Pt with the cis-configuration. The 13C NMR spectrum
displayed two kinds of carbon directly bound to the Pt metal at ꢁ
4.8 for Pt–CH3 and 38.0 for the benzyl carbon. In the 1H NMR
spectrum, two kinds of benzyl protons with equal intensity (2H)
appear;one is a singlet signal at ꢁ5.24 and another one is a doublet
signal at ꢁ3.90 with 195Pt satellites. These spectra indicate that the
cleavage of the C(benzyl)–O bond in only one of the two PN
ligands in 3 resulted in the formation of the Pt–C bond.12
5
6
a) S. Komiya and T. Shindo, J. Chem. Soc., Chem. Commun., 1984,
1672. b) A. Yamamoto, Adv. Organomet. Chem., 34, 111 (1992). c)
X. Zhang, E. J. Watson, C. A. Dullaghan, S. M. Gorun, and D. A.
Sweigart, Angew. Chem., Int. Ed., 38, 2206 (1999).
2: IR (KBr tablet): 1604 cmÀ1 (ꢃC=N). 1H NMR (CDCl3): ꢁ 8.57–
8.70 (m, 1H), 6.35–8.10 (m, 17H), 5.77 (d, 2JH-H ¼ 11:8 Hz, 1H),
5.46 (d, 2JH-H ¼ 11:5 Hz, 1H), 4.63 (d, 2JH-H ¼ 11:8 Hz, 1H), 4.22
(d, 2JH-H ¼ 11:8 Hz, 1H), 0.88 (d, 2JPt-H ¼ 94:8 Hz,
2
3
3JP-H ¼ 7:4 Hz, 3H), 0.41 (d, JPt-H ¼ 77:2 Hz, JP-H ¼ 7:4 Hz,
3H). 31P{1Hg NMR (CDCl3): ꢁ 22.7 (s, 1JPt-P ¼ 1949 Hz). Found:
C, 53.01;H, 4.42;N, 2.39%;Calcd for C 27H28NOPPt: C, 53.29;H,
4.64;N, 2.30%.
7
8
P. S. Pregosin and R. W. Kunz, ‘‘31P and 13C NMR of Transition
Metal Complexes,’’ Springer-Verlag, Berlin (1979) pp 94–99.
3: IR (KBr tablet): 1590, 1571 cmÀ1 (ꢃC=N). 1H NMR (CDCl3): ꢁ
8.36–8.50 (m, 2H), 6.80–7.95 (m, 34H), 4.85 (s, 4H), 4.41 (s, 4H),
2
3
0.41 (dd, JPt-H ¼ 69:8 Hz, JP-H ¼ 8:5 Hz, 8.2 Hz, 6H). 31P{1Hg
1
NMR (CDCl3): ꢁ 24.2 (s, JPt-P ¼ 1818 Hz). FABMS: m=z 994
(Mþ+2), 977 (Mþ-Me), 962 (Mþ-2Me).
9
4: IR (KBr tablet): 1605 cmÀ1 (ꢃC=N). 1H NMR (CDCl3): ꢁ 8.88–
3
9.06 (m, JPt-H ¼ 35:2 Hz, 1H), 6.85–8.00 (m, 17H), 5.62 (s,
2JPt-H ¼ 73:1 Hz, 1H), 4.93 (d, JH-H ¼ 12:4 Hz, 1H), 4.67 (d,
2
2JH-H ¼ 12:6 Hz, 1H), 0.17 (d, JPt-H ¼ 45:9 Hz, JP-H ¼ 1:9 Hz,
3H). 31P{1Hg NMR (CDCl3): ꢁ 29.9 (s, 1JPt-P ¼ 4400 Hz). Found:
C, 52.66;H, 4.00;N, 2.34%;Calcd for C 26H24NOPPt: C, 52.70;H,
4.08;N, 2.36%.
2
3
Scheme 2.
The C–H bond activation would proceed through a 14-
electron species such as (PN-ꢀP)PtMe2 after dissociation of the
nitrogen donor from 2 or the PN ligand from 3.4a The fact that the
C–H bond activation of 3 in the presence of the PN ligand was
suppressed compared to that in the absence of the ligand strongly
suggests that the formation of the 14-electron species is an
important step for the C–H bond activation. On the contrary, the
intramolecular C–O bond of 3 has been accelerated by addition of
excess ligands;the fact is inconsistent with the presence of the 14-
electron species. Prof. Komiya reported the C–O bond cleavage
via ꢂ-aryloxy elimination from an aryloxyethylplatinum(II)
complex and suggested an associative mechanism involving a
five-coordinated intermediate.5a Our system also has a possibility
that contains a similar five-coordinated intermediate such as (PN-
10 cis-5: IR (KBr tablet): 1590, 1571 cmÀ1 (ꢃC=N). 1H NMR (C6D6): ꢁ
8.36–8.48 (m, 1H), 6.55–8.05 (m, 31H), 5.24 (s, 2H), 4.40 (s, 2H),
2
3
3.90 (d, JPt-H ¼ 78:4 Hz, JP-H ¼ 9:1 Hz, 2H), 1.02 (dd,
3
2JPt-H ¼ 67:3 Hz, JP-H ¼ 8:5 Hz, 8.2 Hz, 3H). 31P{1Hg NMR
1
2
(C6D6): ꢁ 44.6 (d, JPt-P ¼ 1988 Hz JP-P ¼ 7:8 Hz, 1P), 24.1 (d,
1JPt-P ¼ 1880 Hz, 2JP-P ¼ 7:8 Hz, 1P). Found: C, 62.21;H, 4.76;N,
1.61%;Calcd for C 45H41NOP2Pt: C, 62.16;H, 4.70;N, 1.57%.
11 cis-6: 31P{1Hg NMR (C6D6): ꢁ 47.3 (d, JPt-P ¼ 2030 Hz,
1
1
2
2JP-P ¼ 5:6 Hz, 1P), 22.5 (d, JPt-P ¼ 1678 Hz, JP-P ¼ 5:6 Hz,
1P). trans-6: 31P{1Hg NMR (C6D6): ꢁ 47.6 (d, JPt-P ¼ 3343 Hz,
1
1
2
2JP-P ¼ 440 Hz, 1P), 26.8 (d, JPt-P ¼ 3062 Hz, JP-P ¼ 440 Hz,
1P).
12 Generation of 2-pyridylmethanol and CH4 was confirmed by the
GCMS and the 1H NMR respectively.