1512
O. Karam et al. / Tetrahedron Letters 44 (2003) 1511–1513
The synthesis of the 6-hydroxymelatonin 5 has been
reported starting from non-commercial 6-benzyloxy-5-
methoxyindole,7 utilizing the Mannich base methodol-
ogy (six steps, 23%),8 or by the Knoevenagel
condensation route (five steps, 19%).9
References
1. Lerner, A. B.; Case, J. D. J. Am. Chem. Soc. 1959, 81,
6084–6085.
2. (a) Reiter, R. J. Endocrine Rev. 1991, 12, 151–180; (b)
Kennaway, D. P. Pineal Res. Rev. 1984, 2, 113–140.
3. (a) Wehr, T. A.; Rosenthal, N. F. Am. J. Psychiatry 1989,
146, 829–839; (b) Lewy, A. J.; Sack, R. L. US Patent
5,242,941, 1994; (c) Rubin, R. T.; Heist, E. K.; McGeory,
S. S.; Hanada, K.; Lesser, I. M. Arch. Gen. Psychiatry
1992, 49, 558–567; (d) Armstrong, S. M.; Redman, J. R.
Med. Hypothesis 1991, 34, 300–309.
In this paper, we describe a more efficient four-step
synthesis of this metabolite from melatonin.
2. Results and discussion
Whereas the elaboration of the tryptamine side-chain is
readily effected by conventional means, versatile meth-
ods for the introduction of functionality into the benzene
ring are lacking and usually involve classical electrophile
substitution or prior incorporation of the substitution in
the de novo indole ring construction.10 Direct oxidation
of melatonin with ozone or m-chloroperbenzoic acid
(m-CPBA),11 singlet oxygen,12 or a mixture of HCl and
DMSO,13 always affects the pyrrole ring of melatonin 1.
Herein, we report a more efficient synthesis of 6-hydroxy-
melatonin 5 prepared as outlined in Scheme 1.
4. Kopin, I. J.; Pare, C. M.; Axelrod, J.; Weisbach, H. J.
Biol. Chem. 1961, 236, 3072–3075.
5. (a) Slsak, M. E.; Markey, S. P.; Colburn, R. W.; Zavadil,
A. P.; Kopin, I. J. Life Sci. 1979, 25, 803–806; (b) Greer,
M.; Williams, C. M. Clin. Chim. Acta 1967, 15, 165–168;
(c) Fellenberg, A. J.; Phillipou, G.; Seamark, R. F.
Endocr. Res. Commun. 1980, 7, 167–175.
6. Cohen, M. WO Patent 9,014,084A1, 1990.
7. Julia, M.; Manoury, P.; Voillaume, C. Bull. Soc. Chim.
1965, 5, 1417–1423.
8. Taborsky, R. G.; Delviges, P.; Page, I. H. J. Med. Chem.
1965, 8, 855–858.
The improvement of the synthesis is based on the choice
of the N-protecting groups of melatonin 1. Therefore,
compound 2 was prepared to favour acylation on the
benzene ring, the N-acylation protecting the pyrrole
ring.14
9. Hall, D. E.; Jackson, A. H. J. Chem. Soc. (C) 1967,
1681–1682.
10. (a) Sundberg, R. G. The Chemistry of Indoles; Academic
Press: New York, 1970; (b) Besswick, P. J.; Greenwood,
C. S.; Mowlem, T. J.; Nechvatal, G.; Widdowson, D. A.
Tetrahedron 1988, 44, 7325–7334.
The reaction of melatonin 1 with ethyl chloroformate,
tetrabutylammonium hydrogenosulfate (TBAHS) and
sodium hydroxide in dichloromethane gave the carba-
mate 2 in good yield (93%).
11. Hirata, F.; Hayaishi, O.; Tokuyama, T.; Senoh, S. J.
Biol. Chem. 1974, 249, 1311–1313.
12. Nakagawa, M.; Chiba, J.; Hino, T. Heterocycles 1978, 9,
385–390.
13. Hugel, H. M. Org. Prep. Proc. Int. 1995, 27, 3–31.
14. (a) Jackson, A. H.; Naido, B.; Smith, A. E.; Bailey, A. S.;
Vandervala, M. H. J. Chem. Soc., Chem. Commun. 1978,
779–781; (b) Edward, J. G.; David, G. R.; Victor, S. J.
Org. Chem. 1995, 60, 1484–1485; (c) Shin-ichi, N.; Kat-
sunori, T.; Toshio, G. Tetrahedron Lett. 1994, 35, 2699–
2700; (d) Shin-ichi, N.; Katsunori, T.; Toshio, G.
Synthesis 1994, 10, 1018–1020.
A regioselective Friedel–Crafts acylation at the 6-posi-
tion of 2,15 using acetyl chloride and aluminium chloride
for 60 min at 20°C, afforded the desired compound 3a16
(84% yield). Structure of compound 3a was determined
1
using COSY H–1H and HMQC spectra. It should be
pointed out that phenol 3b was formed (95%) when the
reaction was carried out overnight under the same
conditions.
15. Preparation of 2: To a stirred suspension of melatonin 1
(1.01 g, 4.3 mmol) and sodium hydroxide (5.2 g, 0.13
mol) was added ethylchloroformate (1.75 mL, 18.3 mmol)
and tetrabutylammonium hydrogensulfate (1.46 g, 4.3
mmol) in dichloromethane (92 mL). The mixture was
then stirred for 1 h at rt. The reaction mixture was
filtered, and the organic phase was washed three times
with water, dried over MgSO4, and evaporated to dry-
ness. Upon the addition of ether a white solid was
obtained. Recrystallization from ether gave white crys-
talline 2 (1.24 g, 93%): mp 100–101°C; IR (CHCl3): wmax
Baeyer–Villiger oxidation of compound 3a, with m-
CPBA in dichloromethane in the presence of trifl-
uoroacetic acid at 20°C for 60 min, afforded compound
417 in good yield (83%). Removal of the acyl and
carbamate groups was accomplished under basic condi-
tions (NaOH/MeOH) furnishing 6-hydroxymelatonin 518
in 65% yield.
1
3. Conclusion
3289, 1731, 1652 cm−1; H NMR (CDCl3, 300 MHz): l
8.00 (1H, d, J=8.2 Hz, H-7), 7.41 (1H, s, H-2), 7 (1H, s,
J=2.3, H-4), 6.94 (1H, dd, J=9, 2.6 Hz, H-6), 5.82 (1H,
sl, NH), 4.44 (2H, q, J=7.1 Hz, H-12), 3.86 (3H, s,
CH3O), 3.57 (2H, q, 6.9 Hz, H-9), 2.87 (2H, t, J=6.75
Hz, H-8), 1.98 (3H, s, NCOCH3), 1.48 (3H, t, J=6.3 Hz,
H-13); 13C NMR (CDCl3, 75 MHz): l 118.25 (C-2),
116.07 (C-7), 113.30 (C-6), 101.77 (C-4), 63.07 (C-12),
55.75 (CH3O), 39.04 (C-9), 25.14 (C-8), 23.34 (NCOCH3),
14.45 (C-13); EIMS: m/z 304 [M]+ (60), 245 (100), 232
This work constitutes an efficient direct functionalization
of the benzene moiety of melatonin 1. Selective 6-substi-
tution can be achieved via carbamate protection and
Friedel–Crafts acetylation. The utility of this methodol-
ogy for the modification of indole derivatives in total
synthesis is noteworthy. This strategy provided access to
the major melatonin metabolite 5 in four steps with a
satisfactory overall yield (48%) from melatonin.