Paper
Organic & Biomolecular Chemistry
Ph C-3), 72.6 (d, J = 4.7 Hz, COH), 53.4 (d, J = 6.5 Hz, CH2Cl),
25.8 (d, J = 3.5 Hz, CH3). 19F NMR (376 MHz, CDCl3) δ: −141.9
(m, F), −134.7 (m, F), −115.7 (m, F). HRMS (ESI), m/z: calcd for
C9H9ClF3O+: 225.0289 [M + H]+; found: 225.0286.
2016, 55, 7712; (c) S. Molitor and V. H. Gessner, Chem. –
Eur. J., 2013, 19, 11858; (d) C. Kupper, S. Molitor and
V. H. Gessner, Organometallics, 2014, 33, 347; (e) S. Molitor
and V. H. Gessner, Synlett, 2015, 861; (f) F. M. Bickelhaupt,
H. L. Hermann and G. Boche, Angew. Chem., Int. Ed., 2006,
45, 823.
4 S. Monticelli, M. Rui, L. Castoldi, G. Missere and V. Pace,
Monatsh. Chem., 2018, 149, 1285.
5 R. Tarhouni, B. Kirschleger, M. Rambaud and J. Villieras,
Tetrahedron Lett., 1984, 25, 835.
6 For recent work with carbenoids from our group, see:
(a) S. Touqeer, R. Senatore, M. Malik, E. Urban and V. Pace,
Adv. Synth. Catal., 2020, 362, 5056; (b) L. Ielo, L. Castoldi,
S. Touqeer, J. Lombino, A. Roller, C. Prandi, W. Holzer and
V. Pace, Angew. Chem., 2020, 59, 20852; (c) L. Ielo,
S. Touqeer, A. Roller, T. Langer, W. Holzer and V. Pace,
Angew. Chem., Int. Ed., 2019, 58, 2479; (d) V. Pace,
L. Castoldi, E. Mazzeo, M. Rui, T. Langer and W. Holzer,
Angew. Chem., Int. Ed., 2017, 56, 12677.
7 For illuminating examples, see: (a) D. S. Matteson, J. Org.
Chem., 2013, 78, 10009; (b) D. S. Matteson and
D. Majumdar, J. Am. Chem. Soc., 1980, 102, 7588;
(c) S. Balieu, G. E. Hallett, M. Burns, T. Bootwicha,
J. Studley and V. K. Aggarwal, J. Am. Chem. Soc., 2015, 137,
4398; (d) G. Casoni, M. Kucukdisli, J. M. Fordham,
M. Burns, E. L. Myers and V. K. Aggarwal, J. Am. Chem. Soc.,
2017, 139, 11877; (e) J. Wu, P. Lorenzo, S. Zhong, M. Ali,
C. P. Butts, E. L. Myers and V. K. Aggarwal, Nature, 2017,
547, 436; (f) A. Fawcett, A. Murtaza, C. H. U. Gregson and
V. K. Aggarwal, J. Am. Chem. Soc., 2019, 141, 4573.
2-Chloro-1-(4-fluorophenyl)-1-phenylethanol (15). By follow-
ing the general procedure 1, starting from 2-(4-fluorophenyl)-2-
phenyloxirane (214 mg, 1.0 mmol, 1.0 equiv.), ICH2Cl (353 mg,
0.15 mL, 2.0 mmol, 2.0 equiv.), MeLi (1.6 M, 1.1 mL,
1.8 mmol, 1.8 equiv.) and 2-MeTHF (3 mL), the desired
product was obtained in 90% yield (225 mg) as a colourless oil
after chromatography on silica gel (90 : 10 v/v, n-hexane/diethyl
1
ether). H NMR (400 MHz, CDCl3) δ: 7.43 (m, 2H, Ph2 H-2,6),
7.42 (m, 2H, Ph1 H-2,6), 7.36 (m, 2H, Ph2 H-3,5), 7.30 (m, 1H,
Ph2 H-4), 7.03 (m, 2H, Ph1 H-3,5), 4.18 (A-part of an AB-system,
2
2JAB = 11.7 Hz, 1H, CH2Cl), 4.16 (B-part of an AB-system, JAB
=
11.7 Hz, 1H, CH2Cl), 3.17 (brs, 1H, OH). 13C NMR (100 MHz,
CDCl3) δ: 162.2 (d, J = 246.9 Hz, Ph1 C-4), 143.0 (Ph2 C-1), 139.1
(d, J = 3.2 Hz, Ph1 C-1), 128.4 (Ph2 C-3,5), 128.3 (d, J = 8.2 Hz,
Ph1 C-2,6), 127.9 (Ph2 C-4), 126.3 (Ph2 C-2,6), 115.2 (d, J =
21.4 Hz, Ph1 C-3,5), 77.5 (COH), 53.1 (CH2Cl). 19F NMR
(376 MHz, CDCl3) δ: −114.7 (m, F). HRMS (ESI), m/z: calcd for
C14H13ClFO+: 251.0633 [M + H]+; found: 251.0659.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
8 (a) S. Touqeer, L. Castoldi, T. Langer, W. Holzer and
V. Pace, Chem. Commun., 2018, 54, 10112; For analogous
operations leading to stable a-selenomethyl halides, see:
(b) R. Senatore, M. Malik, E. Urban, W. Holzer and V. Pace,
Tetrahedron, 2021, DOI: 10.1016/j.tet.2021.131921.
L. I. and M. M. contributed equally to the work. We thank the
University of Vienna, the University of Turin, the Complutense
University of Madrid and Fondazione RiMed (Palermo, Italy)
for generous support. M. M. acknowledges OEAD for a Blau
grant. V. Pillari thanks the University of Vienna for a Uni:docs
fellowship. S. M. thanks the University of Messina for a visiting
pre-doctoral grant.
9 R. Huisgen and U. Burger, Tetrahedron Lett., 1970, 11, 3053.
10 R. C. Hahn and J. Tompkins, Tetrahedron Lett., 1990, 31, 937.
11 M. Miele, A. Citarella, T. Langer, E. Urban, M. Zehl,
W. Holzer, L. Ielo and V. Pace, Org. Lett., 2020, 22, 7629.
12 For reviews and recent selected applications of 2-MeTHF in
synthesis, see: (a) V. Pace, P. Hoyos, L. Castoldi,
P. Domínguez de María and A. R. Alcántara, ChemSusChem,
2012, 5, 1369; (b) V. Pace, Aust. J. Chem., 2012, 65, 301;
(c) D. F. Aycock, Org. Process Res. Dev., 2007, 11, 156;
(d) P. Lei, Y. Ling, J. An, S. P. Nolan and M. Szostak, Adv.
Synth. Catal., 2019, 361, 5654; (e) E. Bisz and M. Szostak,
ChemSusChem, 2018, 11, 1290; (f) F. F. Mulks, L. J. Bole,
L. Davin, A. Hernán-Gómez, A. Kennedy, J. García-Álvarez
and E. Hevia, Angew. Chem., 2020, 59, 19021; (g) M. Fairley,
L. J. Bole, F. F. Mulks, L. Main, A. R. Kennedy, C. T. O’Hara,
J. García-Alvarez and E. Hevia, Chem. Sci., 2020, 11, 6500;
(h) V. Pace, P. Hoyos, M. Fernández, J. V. Sinisterra and
A. R. Alcántara, Green Chem., 2010, 12, 1380; (i) V. Pace,
L. Castoldi, P. Hoyos, J. V. Sinisterra, M. Pregnolato and
J. M. Sánchez-Montero, Tetrahedron, 2011, 67, 2670;
( j) V. Pace, P. Hoyos, A. R. Alcántara and W. Holzer,
Notes and references
1 For reviews on carbenoid chemistry, see: (a) M. Braun, in
The Chemistry of Organolithium Compounds, ed. Z. Rappoport
and I. Marek, John Wiley and Sons, Chichester, 2004, vol. 1,
pp. 829; (b) V. H. Gessner, Chem. Commun., 2016, 52, 12011;
(c) V. Capriati and S. Florio, Chem. – Eur. J., 2010, 16, 4152;
(d) V. Pace, Aust. J. Chem., 2014, 67, 311; (e) V. Pace,
W. Holzer and N. De Kimpe, Chem. Rec., 2016, 16, 2061.
2 (a) L. Castoldi, S. Monticelli, R. Senatore, L. Ielo and
V. Pace, Chem. Commun., 2018, 54, 6692; (b) L. Ielo,
V. Pillari, M. Miele, D. Castiglione and V. Pace, Synlett,
2020, DOI: 10.1055/s; (c) V. Pace, L. Castoldi, S. Monticelli,
M. Rui and S. Collina, Synlett, 2017, 879.
3 For stability and degradative studies on carbenoids, see:
(a) W. Kirmse, Angew. Chem., Int. Ed. Engl., 1965, 4, 1;
(b) S. Molitor and V. H. Gessner, Angew. Chem., Int. Ed.,
2042 | Org. Biomol. Chem., 2021, 19, 2038–2043
This journal is © The Royal Society of Chemistry 2021