Organic Letters
Letter
(7) Someya, H.; Yorimitsu, H.; Oshima, K. Silver-Catalyzed Cross-
Coupling Reactions of Alkyl Bromides with Alkyl or Aryl Grignard
Reagents. Tetrahedron Lett. 2009, 50, 3270−3272.
(8) Shen, R.; Iwasaki, T.; Terao, J.; Kambe, N. Copper-Catalyzed
Coupling Reaction of Unactivated Secondary Alkyl Iodides with Alkyl
Grignard Reagents in the Presence of 1,3-Butadiene as an Effective
Additive. Chem. Commun. 2012, 48, 9313−9315.
(9) Burns, D. H.; Miller, J. D.; Chan, H.-K.; Delaney, M. O. Scope
and Utility of a New Soluble Copper Catalyst [CuBr−LiSPh−LiBr−
THF]: A Comparison with Other Copper Catalysts in Their Ability
to Couple One Equivalent of a Grignard Reagent with an Alkyl
Sulfonate. J. Am. Chem. Soc. 1997, 119, 2125−2133.
(10) Yang, C.-T.; Zhang, Z.-Q.; Liang, J.; Liu, J.-H.; Lu, X.-Y.; Chen,
H.-H.; Liu, L. Copper-Catalyzed Cross-Coupling of Nonactivated
Secondary Alkyl Halides and Tosylates with Secondary Alkyl
Grignard Reagents. J. Am. Chem. Soc. 2012, 134, 11124−11127.
(11) (a) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. Iron-
Catalyzed Cross-Coupling of Primary and Secondary Alkyl Halides
with Aryl Grignard Reagents. J. Am. Chem. Soc. 2004, 126, 3686−
3687. (b) Cahiez, G.; Habiak, V.; Duplais, C.; Moyeux, A. Iron-
Catalyzed Alkylations of Aromatic Grignard Reagents. Angew. Chem.,
metallic-Type Nucleophiles for Asymmetric Synthesis. J. Am. Chem.
Soc. 2011, 133, 16794−16797.
(20) (a) Kiyotsuka, Y.; Acharya, H. P.; Katayama, Y.; Hyodo, T.;
Kobayashi, Y. Picolinoxy Group, a New Leaving Group for anti SN2′
Selective Allylic Substitution with Aryl Anions Based on Grignard
Reagents. Org. Lett. 2008, 10, 1719−1722. (b) Kaneko, Y.; Kiyotsuka,
Y.; Acharya, H. P.; Kobayashi, Y. Construction of a Quaternary
Carbon at the Carbonyl Carbon of the Cyclohexane Ring. Chem.
Commun. 2010, 46, 5482−5484. (c) Feng, C.; Kobayashi, Y. Allylic
Substitution for Construction of a Chiral Quaternary Carbon
Possessing an Aryl Group. J. Org. Chem. 2013, 78, 3755−3766.
(21) McCabe, R. W.; Parri, O. L.; Price, A. H. Synthesis and
Mesophase Formation of Branched-Chain Bis-l,2-dithiolatonickel(II)
Complexes. J. Mater. Chem. 1993, 3, 609−613.
(22) Kennedy, N.; Cohen, T. The Stereoselective Reductions of
Ketones to the Most Thermodynamically Stable Alcohols using
Lithium and Hydrated Salts of Common Transition Metals. J. Org.
Chem. 2015, 80, 8134−8141.
Int. Ed. 2007, 46, 4364−4366. (c) Furstner, A.; Martin, R.; Krause,
̈
H.; Seidel, G.; Goddard, R.; Lehmann, C. W. Preparation, Structure,
and Reactivity of Nonstabilized Organoiron Compounds. Implica-
tions for Iron-Catalyzed Cross Coupling Reactions. J. Am. Chem. Soc.
2008, 130, 8773−8787. (d) Noda, D.; Sunada, Y.; Hatakeyama, T.;
Nakamura, M.; Nagashima, H. Effect of TMEDA on Iron-Catalyzed
Coupling Reactions of ArMgX with Alkyl Halides. J. Am. Chem. Soc.
2009, 131, 6078−6079. (e) Hatakeyama, T.; Hashimoto, T.; Kondo,
Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.;
Nakamura, M. Iron-Catalyzed Suzuki−Miyaura Coupling of Alkyl
Halides. J. Am. Chem. Soc. 2010, 132, 10674−10676.
(12) Xu, S.; Oda, A.; Bobinski, T.; Li, H.; Matsueda, Y.; Negishi, E.
Highly Efficient, Convergent, and Enantioselective Synthesis of
Phthioceranic Acid. Angew. Chem., Int. Ed. 2015, 54, 9319−9322.
(13) (a) Murayama, T.; Nozaki, K. Single-Step Construction of the
anti-Deoxypropionate Motif from Propylene: Formal Total Synthesis
of the Cuticular Hydrocarbons Isolated from Antitrogus parvulus.
Angew. Chem., Int. Ed. 2018, 57, 11394−11398. (b) Ota, Y.;
Murayama, T.; Nozaki, K. One-Step Catalytic Asymmetric Synthesis
of All-syn Deoxypropionate Motif from Propylene: Total synthesis of
(2R,4R,6R,8R)-2,4,6,8-Tetramethyldecanoic Acid. Proc. Natl. Acad.
Sci. U. S. A. 2016, 113, 2857−2861. (c) Herber, C.; Breit, B.
Enantioselective Total Synthesis and Determination of the Absolute
Configuration of the 4,6,8,10,16,18-Hexamethyldocosane from
Antitrogus parvulus. Angew. Chem., Int. Ed. 2005, 44, 5267−5269.
(14) (a) Mori, S.; Nakamura, E.; Morokuma, K. Mechanism of SN2
Alkylation Reactions of Lithium Organocuprate Clusters with Alkyl
Halides and Epoxides. Solvent Effects, BF3 Effects, and Trans-Diaxial
Epoxide Opening. J. Am. Chem. Soc. 2000, 122, 7294−7307.
(b) Yoshikai, N.; Nakamura, E. Mechanisms of Nucleophilic
Organocopper(I) Reactions. Chem. Rev. 2012, 112, 2339−2372.
(15) 2-Pyridinesulfonates were synthesized from the corresponding
alchohols with 2-PySO2F and NaHMDS in THF and DMF.
(16) Hanessian, S.; Kagotani, M.; Komaglou, K. Design and
Reactivity of Organic Functional Groups − 2-Pyridylsulfonates as
Nucleofugal Esters: Remarkably Mild Transformations into Halides
and Olefins. Heterocycles 1989, 28, 1115−1120.
(17) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
Asymmetric Transfer Hydrogenation of α,β-Acetylenic Ketones. J.
Am. Chem. Soc. 1997, 119, 8738.
(18) Gao, Z.; Fletcher, S. P. Asymmetric Conjugate Addition of
Alkylzirconium Reagents to α,β-Unsaturated Thioesters: Access to
Fragrances and Acyclic Stereochemical Arrays. Chem. Commun. 2017,
53, 10216−10219.
(19) (a) Denmark, S. E.; Vogler, T. Synthesis and Reactivity of
Enantiomerically Enriched Thiiranium Ions. Chem. - Eur. J. 2009, 15,
11737−11745. (b) Larouche-Gauthier, R.; Elford, T. G.; Aggarwal, V.
K. Ate Complexes of Secondary Boronic Esters as Chiral Organo-
E
Org. Lett. XXXX, XXX, XXX−XXX