C O M M U N I C A T I O N S
Table 2. Effect of Amide Moiety on Ag-Catalyzed Enantioselective
Cycloadditionsa
entry
R
conv (%)
ee (%)
1
2
3
4
5
6
p-OMeC6H4
p-CF3C6H4
2,6-Me2C6H3
NHBu
Bn
NH(OMe)
a
b
c
d
e
f
>98
75
53
>98
>98
52
92
88
28
80
80
20
studies will include investigating the role of i-PrOH additive and
whether it is involved in shuttling Me3Si from O to N (or vice
versa) and/or the release of Ag from product. These studies will
explore the coordination geometry of the Ag center(s) by establish-
ing the kinetic details of the catalytic cycle and the exact structure
(stoichiometry) of the reactive substrate-catalyst complex.
a See Table 1 for reaction conditions.
Because of the robustness of these asymmetric catalytic trans-
formations and the significance of piperidines to biological
chemistry, the availability of an effective supported ligand consti-
tutes an important aspect of this research, particularly in relation
to high throughput enantioselective synthesis. The data in eq 2
summarize results of our initial studies; ligand 5 can be reused
through at least five cycles.7 It should be noted that cycloadditions
with 5 are performed in air and with undistilled THF (fresh AgOAc
added for each cycle), and lower enantioselectivities are consistent
with the data shown in entry 5 of Table 2 (3e, NHBn vs NAr
terminus).
Acknowledgment. This work was supported by the NIH (GM-
57212).
Supporting Information Available: Experimental procedures and
spectral and analytical data for reaction products (PDF). This material
References
(1) Danishefsky, S. J.; DeNinno, M. P. Angew. Chem., Int. Ed. Engl. 1987,
26, 15-23.
(2) Kerwin, J. F.; Danishefsky, S. J. Tetrahedron Lett. 1982, 23, 3739-3742.
(3) (a) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed.
1998, 37, 979-981. (b) Kobayashi, S.; Kusakabe, K.; Kimoyama, S.;
Ishitani, H. J. Org. Chem. 1999, 64, 5220-5221. (c) Yao, S.; Johannsen,
M.; Hazell, R. G.; Jorgensen, K. A. Angew. Chem., Int. Ed. 1998, 37,
3121-3124. For a noncatalytic enantioselective cycloaddition, see: (d)
Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264-3265.
(4) For previous reports regarding amino acid-based phosphine ligands, see:
(a) Gilbertson, S. R.; Collibee, S. E.; Agarkov, A. J. Am. Chem. Soc.
2000, 122, 6522-6523. (b) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H.
J. Am. Chem. Soc. 2001, 123, 755-756. (c) Mizutani, H.; Degrado, S. J.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 779-781. (d) Luchaco-
Cullis, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193.
(e) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2002,
124, 13362-13363. (f) Hird, A. W.; Hoveyda, A. H. Agnew. Chem., Int.
Ed. In press. (g) Murphy, K. E.; Hoveyda, A. H. J. Am. Chem. Soc. In
press.
(5) (a) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P. A.; Snapper,
M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668-
1671. (b) Shimizu, K. D.; Cole, B. M.; Krueger, C. A.; Kuntz, K. W.;
Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1997, 36,
1704-1707. (c) Hoveyda, A. H. In Handbook of Combinatorial Chemistry;
Nicolaou, K. C., Hanko, R., Hartwig, W., Eds.; Wiley-VCH: Weinheim,
2002; pp 991-1016.
(6) (a) Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.;
Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999,
121, 4284-4285. (b) Porter, J. R.; Wirschun, W. G.; Kuntz, K. W.;
Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 2657-
2658. (c) Jospehsohn, N. S.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A.
H. J. Am. Chem. Soc. 2001, 123, 11594-11599. (d) Porter, J. R.; Traverse,
J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984-
985. (e) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J.
Am. Chem. Soc. 2001, 123, 10409-10410.
(7) See the Supporting Information for results of recycling studies.
(8) Pelter, A.; Elgendy, S. Tetrahedron Lett. 1988, 29, 677-680.
(9) For conjugate additions to the corresponding carbamates (cyclic products
obtained), see: Comins, D. L.; LaMunyon, D. H.; Chen, X. J. Org. Chem.
1997, 62, 8182-8187.
(10) Pilli, R. A.; Russowsky, D.; Dias, L. C. J. Chem. Soc., Perkin Trans. 1
1990, 1213-1214.
(11) Bhattarai, K.; Cainelli, G.; Panunzio, M. Synlett. 1990, 229-230.
As the examples in eqs 3 and 4 illustrate, enantioenriched cyclic
amines8 can be functionalized diastereoselectively. Noteworthy is
the rupture of the piperidine ring that occurs upon treatment of 4a
with the alkylcuprate9 to afford the derived acyclic â-amino ketone
(Mannich addition product). Subsequent stereoselective reduction10
(10:1, syn:anti) and removal of the o-anisidyl group11 delivers amino
alcohol 7 (93% ee).
Future research will involve the development of catalytic
asymmetric cycloadditions with aliphatic imines, processes which
will likely involve in situ imine formation/cycloaddition6e and might
require a different chiral ligand.5c Upcoming detailed mechanistic
JA030033P
9
J. AM. CHEM. SOC. VOL. 125, NO. 14, 2003 4019