Paper
Organic & Biomolecular Chemistry
(brd, J = 9.5 Hz, 1H); 13C NMR (D2O, 100 MHz) δ 26.8, 61.3,
67.2, 70.0, 72.5, 77.2, 77.6, 81.7, 160.8. HRMS(ESI): m/z calcd
for C8H17N2O6 [M + H]+ 237.1087, found 237.1081; m/z calcd
for C8H16N2O6Na [M + Na]+ 259.0906, found 259.0917.
(d) M. Greenstein, J. L. Speth and W. M. Maiese, Antimicrob.
Agents Chemother., 1981, 20, 425–432; (e) M. S. Osburne,
W. M. Maiese and M. Greenstein, Antimicrob. Agents Che-
mother., 1990, 34, 1450–1452.
2 (a) N. J. Davis and S. L. Flitsch, Tetrahedron Lett., 1991, 32,
6793; (b) E. C. Rodriguez, L. A. Marcaurelle and
C. R. J. Bertozzi, J. Org. Chem., 1998, 63, 7134;
(c) M. Hoffmann, F. Burkhart, G. Hessler and H. Kessler,
Helv. Chim. Acta, 1996, 79, 1519–1532; (d) F. Burkhart,
M. Hoffmann and H. Kessler, Angew. Chem., Int. Ed. Engl.,
1997, 36, 1191–1192; (e) S. B. Cohen and R. L. Halcomb,
Org. Lett., 2001, 3, 405–407; (f) S. Knapp and D. S. Myers,
J. Org. Chem., 2001, 66, 3636–3638; (g) X. Zhu,
K. Pachamuthu and R. R. Schmidt, J. Org. Chem., 2003, 68,
5641; For reviews, see: (h) A. Dondoni and A. Mara, Chem.
Rev., 2000, 100, 4395; (i) B. G. Davis, Chem. Rev., 2002, 102,
579.
General method for the synthesis of N-substituted urea
glucosides using Method B
N′-Butyl-N-2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl urea (13a).
A solution of D-glucose (12) (300 mg, 1.67 mmol) and n-butyl-
urea (387 mg, 3.33 mmol) dissolved in a mixture of CH3CN
(1.0 mL) and 2.4 N HCl (0.25 mL) was stirred at 50 °C for
1 day, and was then neutralized with solid NaHCO3. The result-
ing reaction mixture was diluted with H2O (ca. 2.0 mL) and
washed with CH2Cl2. The separated aqueous layer was
extracted with n-BuOH, and the combined organic extracts
were concentrated under reduced pressure to afford the solids.
The resulting crude product was dissolved in a mixture of
pyridine (10 mL) and Ac2O (5.0 mL). The solution was stirred
at 50 °C for 3 hours, and diluted with saturated aqueous
NaHCO3. The separated aqueous layer was extracted with Et2O.
The combined organic layers were washed with brine, dried
(Na2SO4) and then concentrated under reduced pressure. The
resulting residue was purified by silica gel chromatography
(2 : 1 AcOEt–hexane) to afford n-butylurea glucoside 13a as a
white solid (485 mg, 65%, β : α = 92 : 8): mp 97–98 °C (recrystal-
lized from AcOEt–hexane); [α]2D6 = +1.46 (c 1.00, CHCl3); IR
3 Y. Ichikawa, F. Ohara, H. Kotsuki and K. Nakano, Org. Lett.,
2006, 8, 5009–5012.
4 (a) T. Nishiyama, Y. Ichikawa and M. Isobe, Synlett, 2003,
47–50; (b) Y. Ichikawa, Y. Matsukawa, T. Nishiyama and
M. Isobe, Eur. J. Org. Chem., 2004, 586; (c) Y. Ichikawa,
Y. Matsukawa and M. Isobe, Synlett, 2004, 1019–1022;
(d) Y. Ichikawa, Tetrahedron, 2004, 60, 2621–2627;
(e) Y. Ichikawa, T. Nishiyama and M. Isobe, Tetrahedron,
2004, 60, 2621–2627; (f) Y. Ichikawa, Y. Matsukawa and
M. Isobe, J. Am. Chem. Soc., 2006, 128, 3934–3938;
(g) Y. Ichikawa, Y. Matsukawa, M. Tamura, F. Ohara,
M. Isobe and H. Kotsuki, Chem. – Asian J., 2006, 1, 717–
723.
5 (a) C. Böttcher and K. Burger, Tetrahedron Lett., 2003, 44,
4223–4226; (b) I. Maya, Ó. López, S. Maza, J. G. Fernández-
Bolaños and J. Fuentes, Tetrahedron Lett., 2003, 44, 8539–
8543; (c) A. Bianchi, D. Ferrario and A. Bernardi, Carbohydr.
Res., 2006, 341, 1438–1446; (d) D. Sawada, S. Sasayama,
H. Takahashi and S. Ikegami, Tetrahedron Lett., 2006, 47,
7219–7223; (e) J. Yang, G. J. Mercer and H. M. Nguyen,
Org. Lett., 2007, 9, 4231–4234; (f) G. J. Mercer, J. Yang,
M. J. McKay and H. M. Nguyen, J. Am. Chem. Soc., 2008,
130, 11210–11218; (g) D. Sawada, S. Sasayama,
H. Takahashi and S. Ikegami, Tetrahedron, 2008, 64, 8780–
8788; (h) N. H. Park and H. M. Nguyen, Org. Lett., 2009, 11,
2433–2436; (i) V. Sureshbabu, Synlett, 2011, 1160–1164.
6 For a discussion of protecting group problems in glycosyla-
tion; see: S. Hanessian and B. Lou, Chem. Rev., 2000, 100,
4443–4464.
1
(KBr) νmax 3369, 2960, 2875, 2359, 2342, 1752 cm−1; H NMR
(CDCl3, 500 MHz) δ 0.91 (t, J = 7.0 Hz, 3H), 1.32 (sept, J =
7.0 Hz, 2H), 1.45 (quint, J = 7.0 Hz, 2H), 2.01 (s, 3H), 2.03 (s,
3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.10–3.17 (m, 2H), 3.82 (ddd, J =
9.5, 4.5, 2.5 Hz, 1H), 4.09 (dd, J = 12.5, 2.5 Hz, 1H), 4.32 (dd,
J = 12.5, 4.5 Hz, 1H), 4.72 (t, J = 5.5, 1H), 4.90 (t, J = 9.5 Hz,
1H), 5.06 (t, J = 9.5 Hz, 1H), 5.16 (t, J = 9.5 Hz, 1H), 5.30 (t, J =
9.5 Hz, 1H), 5.36 (d, J = 9.5 Hz, 1H); 13C NMR (CDCl3,
125 MHz) δ 13.7, 20.0, 20.5, 20.6, 20.7, 32.0, 40.0, 61.8, 68.3,
70.5, 72.9, 73.0, 80.1, 156.3, 169.6, 169.8, 170.6, 170.9; HRMS
(ESI): m/z calcd for C19H31N2O10 [M + H]+ 447.1979, found
447.1989.
Acknowledgements
Financial support for this study provided by the Kochi Univer-
sity President’s Discretionary Grant is greatly appreciated.
7 (a) M. N. Schoorl, Recl. Trav. Chim. Pays-Bas, 1903, 22, 31;
(b) M. H. Benn and A. S. Jones, J. Chem. Soc., 1960, 3837–
3841.
8 B. Helferich and W. Kosche, Ber. Dtsch. Chem. Ges., 1926,
59, 69–79.
Notes and references
1 (a) G. A. Ellestad, D. B. Cosulich, R. W. Broschard,
J. H. Martin, M. P. Kunstmann, G. O. Morton,
J. E. Lancaster, W. Fulmor and F. M. Lovell, J. Am. Chem.
Soc., 1978, 100, 2515–2524; (b) R. H. Chen, D. N. Whittern,
A. M. Buko and J. B. McAlpine, J. Antibiot., 1989, 42, 533–
9 J. G. Erickson and J. S. Keps, J. Am. Chem. Soc., 1953, 75,
4339–4339.
537; (c) K. Dobashi, K. Nagaoka, Y. Watanabe, M. Nishida, 10 This work has been communicated in a preliminary form:
M. Hamada, H. Naganawa, T. Takita, T. Takeuchi and
Y. Ichikawa, S. Kusaba, T. Minami, Y. Tomita, K. Nakano
H. Umezawa, J. Antibiot., 1985, 38, 1166–1170;
and H. Kotsuki, Synlett, 2011, 1462–1466.
3930 | Org. Biomol. Chem., 2014, 12, 3924–3931
This journal is © The Royal Society of Chemistry 2014