UPDATES
was added. After stirring for 16 h at 908C the solvent was
removed under reduced pressure to afford product 6, which
was purified by silica gel column chromatography.
Org. Lett. 2005, 7, 143–145; b) M. Harmata, Y. Chen,
C. L. Barnes, Org. Lett. 2007, 9, 5251–5253; c) A.
Garimallaprabhakaran, X. Hong, M. Harmata, ARKI-
VOC 2012, 119–128; d) W. Dong, L. Wang, K. Partha-
sarathy, F. Pan, C. Bolm, Angew. Chem. 2013, 125,
11787–11790; Angew. Chem. Int. Ed. 2013, 52, 11573–
11576; e) D.-G. Yu, F. de Azambuja, F. Glorius, Angew.
Chem. 2014, 126, 2792–2796; Angew. Chem. Int. Ed.
2014, 53, 2754–2758; f) Y. Cheng, C. Bolm, Angew.
Chem. 2015, 127, 12526–12529; Angew. Chem. Int. Ed.
2015, 54, 12349–12352; g) R. K. Chinnagolla, A. Vijeta,
M. Jeganmohan, Chem. Commun. 2015, 51, 12992–
12995; h) Y. Cheng, W. Dong, H. Wang, C. Bolm, Chem.
Eur. J. 2016, 22, 10821–10824.
1
2
3
4
5
6
7
8
9
The resulting 2-[(methylthio)methyl]aniline (6, 15.0 mmol,
1.0 equiv.) was dissolved in DCM (50 mL) and the solution
was cooled to À408C. A solution of NCS (2.03 g, 15.0 mmol,
1.0 equiv.) in DCM (50 mL) was added dropwise over a
period of 60 min. After 15 min, an aqueous solution of
sodium hydroxide (10%, 10 mL) was added and the reaction
mixture was warmed to room temperature. After addition of
water (100 mL), the organic layer was separated and cooled
to À408C. Then, mCPBA (77% with water, 3.36 g,
15.0 mmol, 1.0 equiv.) was added in small portions over a
period of 10 min. After 30 min the reaction mixture was
allowed to warm to room temperature and sequentially
washed with saturated aqueous solutions of Na2SO3 and
NaHCO3. The organic layer was dried over anhydrous
magnesium sulfate, and the solvent was removed under
reduced pressure to afford product 3, which was purified by
silica gel column chromatography.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
[6] a) P. Stoss, G. Satzinger, Chem. Ber. 1972, 105, 2575–
2583; b) P. Stoss, G. Satzinger, Chem. Ber. 1975, 108,
3855–3863; c) J. R. Beck, J. A. Yahner, J. Org. Chem.
1978, 43, 2052–2055; E. A. Serebryakov, S. G. Zlotin,
Russ. Chem. Bull. 2002, 51, 1549–1555.
[7] For recent contributions from our group, see: a) H.
Wang, M. Frings, C. Bolm, Org. Lett. 2016, 18, 2431–
2434; b) R. A. Bohmann, Y. Unoh, M. Miura, C. Bolm,
Chem. Eur. J. 2016, 22, 6783–6786.
Acknowledgements
We thank our colleagues in the Multi-Scale Bioactive Systems
initiative at RWTH Aachen University for stimulating dis-
cussions.
[8] P. K. Claus, P. Hofbauer, W. Rieder, Tetrahedron Lett.
1974, 37, 3319–3322.
[9] For a review on bioisostere, see: N. A. Meanwell, J.
Med. Chem. 2011, 54, 2529–2591.
[10] For the role of oxindoles in medicinal chemistry, see:
a) A. Millemaggi, R. J. K. Taylor, Eur. J. Org. Chem.
2010, 4527–4547; for preparative oxindole chemistry,
see: b) G. M. Ziarani, P. Gholamzadeh, N. Lashgari, P.
Hajiabbasi, ARKIVOC 2013, (i), 470–535.
[11] a) P. Claus, W. Vycudilik, Monatsh. Chem. 1970, 101,
396–404; b) P. Claus, W. Rieder, P. Hofbauer, E.
Vilsmaier, Tetrahedron 1975, 31, 505–510; c) P. K. Claus,
E. Jꢂger, Monatsh. Chem. 1985, 116, 1153–1164; d) P.
Claus, W. Vycudilik, W. Rieder, Monatsh. Chem. 1971,
102, 1571–1582.
[12] P. Claus, W. Vycudilik, Tetrahedron Lett. 1968, 32, 3607–
3610.
[13] E. T. Jackson, U.S. Patent 4,031,227, 1977.
[14] All products reported here were racemates. Their
resolution allows the preparation of enantiomerically
pure compounds.
References
[1] a) R. Dua, S. Shrivastava, K. S. Sonwane, S. K. Srivasta-
va, Adv. Biol. Res. 2011, 5, 120–144; b) A. Gomtsyan,
Chem. Heterocycl Compd. 2012, 48, 7–10; c) M. Bau-
mann, R. I. Baxendale, Beilstein J. Org. Chem. 2013, 9,
2265–2319; d) Heterocyclic Chemistry in Drug Discov-
ery, (Ed.: J. J. Li), Wiley, Weinheim, 2013; e) Modern
Crop Protection Compounds, (Eds.: W. Kraemer, U.
Schirmer, P. Jeschke, M. Witschel), Wiley-VCH: Wein-
heim, 2012.
[2] a) P. Ertl, S. Jelfs, J. Mꢁhlbacher, A. Schuffenhauer, P.
Selzer, J. Med. Chem. 2006, 49, 4568–4573; b) W. R. Pitt,
D. M. Parry, B. G. Perry, C. R. Groom, J. Med. Chem.
2009, 52, 2952–2963.
[3] a) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med.
Chem. 2014, 57, 2832–2842; b) B. R. Smith, C. M. East-
man, J. T. Njardarson, J. Med. Chem. 2014, 57, 9764–
9773; c) E. Vidaku, D. T. Smith, J. T. Njardarson, J.
Med. Chem. 2014, 57, 10257–10274; d) B. R. Beno, K.-S.
Yeung, M. D. Bartberger, L. D. Pennington, N. A.
Meanwell, J. Med. Chem. 2015, 58, 4383–4438; e) see
also: U. Lꢁcking, Angew. Chem. 2013, 125, 9670–9580;
Angew. Chem. Int. Ed. 2013, 52, 9399–9408.
[4] a) F. Lovering, J. Bikker, C. Humblet, J. Med. Chem.
2009, 52, 6752–6756; b) F. Lovering, Med. Chem.
Commun. 2013, 4, 515–519; c) J. T. Bagdanoff, Y. Xu, G.
Dollinger, E. Martin, J. Med. Chem. 2015, 58, 5781–
5788.
[15] M. Barbero, S. Bazzi, S. Cadamuro, L. Di Bari, S.
Dughera, G. Ghigo, D. Padula, S. Tabasso, Tetrahedron
2011, 67, 5789–5797.
[16] S. Faivre, G. Demetri, W. Sargent, E. Raymond, Nat.
Rev. Drug Discov. 2007, 6, 734–7445.
[17] For the synthesis of N-Boc-protected aldehyde 14b
commercially available 14a was used as starting materi-
al.
[18] S. Kayser, R. F. Schlenk, M. C. Londono, F. Breiten-
buecher, K. Wittke, J. Du, S. Groner, S. Spꢂth, S.
Krauter, A. Ganser, H. Dçhner, T. Fischer, K. Dçhner,
Blood 2009, 114, 2386–2392.
[19] A.-M. OꢃFarrell, T. J. Abrams, H. A. Yuen, T. J. Ngai,
S. G. Louie, K. W. H. Yee, L. M. Wong, W. Hong, L. B.
Lee, A. Town, B. D. Smolich, W. C. Manning, L. J.
Murray, M. C. Heinrich, J. M. Cherrington, Blood 2003,
101, 3597–3605.
[5] For selected examples, see: a) M. Harmata, K. Rayanil,
M. G. Gomes, P. Zheng, N. L. Calkins, S.-Y. Kim, Y.
Fan, V. Bumbu, D. R. Lee, S. Wacharasindhu, X. Hong,
Adv. Synth. Catal. 2016, 358, 1–6
4
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim