ORGANIC
LETTERS
2003
Vol. 5, No. 7
1131-1134
Synthesis and Spectroscopic Properties
of Finite Ph2N-Containing
Oligo(arylenevinylene) Derivatives That
Emit Blue to Red Fluorescence
,†
Chien-Le Li,† Shwu-Ju Shieh,‡ Shien-Chang Lin,‡ and Rai-Shung Liu*
Department of Chemistry, National Tsing-Hua UniVersity, Hsinchu,
Taiwan 30043, ROC, and DeVelopment Center, Ritek Display Company,
Hsinchu 30043, ROC
Received February 11, 2003
ABSTRACT
A series of oligo(phenylenevinylene) (OPV) derivatives with finite conjugation units were prepared in short steps from few building blocks.
The central and terminal aryl groups of these OPV dyes contain cyano and Ph2N substituents, respectively, which affect color of fluorescence.
The wavelength ranges from 472 nm (blue) to 614 nm (red) depending on the position of the cyano group.
The synthesis of new oligo(phenylenevinylene) OPV deriva-
tives has attracted considerable attention1 because of their
widespread application in light-emitting diodes,2 chemical
sensors,3 nonlinear optics,4 and organic magnetic materials.5
The energy gaps between the HOMO and LUMO orbitals
of OPV are crucial for the application of these materials.1-5
Although an increase in the number of repeating segments
of phenylenevinylene oligomers may decrease the energy
gap, this approach becomes less effective after a finite length
of oligomers is achieved. A systematic study by Yu6 shows
that no further red shift is observed for the oligomer (eq 2,
Scheme 1) after it reaches 10 aryl groups and nine double
bonds, at which point it shows fluorescent emission at 536
nm. The saturation in the emission wavelength arises from
the limited electron delocalization of a longer oligomer.
The use of OPV dyes for organic light emitting-diodes
(OLED) should enable blue, green, and red fluorescent
emission to achieve a full-color display.7 Common OPV
molecules show fluorescent emission at less than 550 nm
even with extensive conjugation. In this study, we report the
synthesis of functionalized OPV dyes (eq 3) with finite
† National Tsing-Hua University.
‡ Ritek Display Co.
(1) (a) Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H.-J.; Hanack,
M.; Hohloch, M.; Steinhuber, E. J. Phy. Chem. B 1998, 102, 1902-1907.
(b) Electronic Materials: The Oligomer Approach; Mullen, K., Wegner,
G., Eds.; Wiley-VCH: Weinheim, Germany, 1998. (c) Tour, J. M. Acc.
Chem. Res. 2000, 33, 791. (d) Bunz, U. F. W. Chem. ReV. 2000, 100, 1605.
(2) (a) Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913-
915. (b) Tang, C. W.; Van Slyke, S. A.; Chen, C. H. J. Appl. Phys. 1989,
65, 3610-3616. (c) Service, R. F. Science 1996, 273, 878-880. (d) Sheats,
J. R.; Antoniadis, H.; Mueschen, M.; Leonard, W.; Miller, J.; Moon, R.;
Roitman, D.; Stocking, A. Science 1996, 273, 884-888.
(3) (a) Irie, M. Chem. Rev. 2000, 100, 1685. (b) Repinec, S. T.; Sension,
R. J.; Szarka, A. Z.; Hochstrasser, R. M. J. Phys. Chem. 1991, 95, 10380
(4) (a) Bosshard, C.; Sutter, K.; Pretre, P.; Hulliger, J.; Florsheimer, M.;
Kaatz, P.; Gunter, P. Organic Nonlinear Optical Materials; Gordon and
Breach Science Publishers: Amsterdam, The Netherlands, 1995; Vol. 1.
(b) Nalwa, H. S.; Myata, S. Nonlinear Optics of Organic Molecules and
Polymers; CRC Press: Boca Raton, FL, 1997
(6) (a) Maddux, T.; Li, W.; Yu, L. J. Am. Chem. Soc. 1997, 119, 844-
845. (b) Shrishendu, K. D.; Maddux, T.; Yu, L. J. Am. Chem. Soc. 1997,
119, 9079-9080.
(7) (a) Ohmori, Y.; Tada, N.; Fujii, A. Thin Solid Films 1998, 331 (1-
2), 89-95. (b) Fukuda, Y.; Watanabe, T.; Wakimoto, T. Synth. Met. 2000,
111, 1-6.
(5) (a) Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 1996, 118,
10625. (b) Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 1997, 119,
4492.
10.1021/ol034246v CCC: $25.00 © 2003 American Chemical Society
Published on Web 03/14/2003