2304
S. Nunokawa et al.
Letter
Synlett
for (+)-mesembrine.16j Therefore, it can be concluded that
the initial step for the Michael addition reaction on a lactam
framework should preferably form the adduct 3g with an R
configuration.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
o
nrtogI
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
Based on these experimental findings, we could pro-
pose a crucial structure in the transition state to explain the
observed asymmetric induction (Figure 2). The contact ion
pair between the negatively charged enolate of the nucleo-
phile and the ammonium cation of the catalyst makes the
donor molecule well-defined within the catalyst major
groove. The presence of a sterically crowding adamantoyl
substituent effectively blocks the approach of the incoming
electrophile to the enolate from the bottom Re-face, thus
making the Si-face attack more favorable.
References and Notes
(1) (a) Quaternary Stereocenters: Challenge and Solutions for
Organic Synthesis; Christoffers, J.; Baro, A., Eds.; Wiley-VCH:
Weinheim, 2005. Recent reviews: (b) Christoffers, J.; Baro, A.
Adv. Synth. Catal. 2005, 347, 1473. (c) Trost, B. M.; Jiang, C. Syn-
thesis 2006, 369. (d) Riant, O.; Hannedouche, J. Org. Biomol.
Chem. 2007, 5, 873. (e) Shibasaki, M.; Kanai, M. Org. Biomol.
Chem. 2007, 5, 2027. (f) Steven, A.; Overman, L. E. Angew. Chem.
Int. Ed. 2007, 46, 5488. (g) Cozzi, P. G.; Hilgraf, R.; Zimmermann,
N. Eur. J. Org. Chem. 2007, 5969. (h) Das, J. P.; Marek, I. Chem.
Commun. 2011, 47, 4593. (i) Wang, B.; Tu, Y. Q. Acc. Chem. Res.
2011, 44, 1207. (j) Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem.
2013, 2745. (k) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013,
78, 12314.
(2) (a) Bella, M.; Gasperi, T. Synthesis 2009, 1583. (b) Dalpozzo, R.;
Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
(c) Kotsuki, H.; Sasakura, N. New and Future Developments in
Catalysis; Catalysis for Remediation and Environmental Con-
cerns; Suib, S. L., Ed.; Elsevier: Amsterdam, 2013, Chap. 19, 563–
603.
‡
Ar
N
O
Ar
N
NBoc
O
O
(3) Organocatalytic Enantioselective Conjugate Addition Reactions;
Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E., Eds.; RSC Publish-
ing: Cambridge, 2010.
Figure 2 Plausible transition-state model
(4) Reviews: (a) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010,
352, 1381. See also: (b) Zhong, F.; Dou, X.; Han, X.; Yao, W.; Zhu,
Q.; Meng, Y.; Lu, Y. Angew. Chem. Int. Ed. 2013, 52, 943; and ref-
erences cited therein.
In summary, we have developed a highly enantioselec-
tive method for the asymmetric Michael addition reaction
of α-aryl-substituted lactams with electron-deficient ole-
fins catalyzed by chiral quaternary ammonium salts de-
rived from readily available cinchona alkaloids. This meth-
od proved to be particularly useful for the construction of
an all-carbon-substituted quaternary carbon stereogenic
center at the α-position of lactams and highlighted its utili-
ty in a highly concise route to the asymmetric synthesis of
(+)-mesembrine (6). Further studies on the application of
this method to natural product synthesis are now in prog-
ress in our laboratory
(5) An alternative approach using Pd-catalyzed allylation has been
developed by Stoltz and co-workers, see: (a) Behenna, D. C.; Liu,
Y.; Yurino, T.; Kim, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nat.
Chem. 2012, 4, 130. (b) Numajiri, Y.; Jiménez-Osés, G.; Wang, B.;
Houk, K. N.; Stoltz, B. M. Org. Lett. 2015, 17, 1082. (c) Liu, Y.;
Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Acc. Chem. Res. 2015, 48, 740.
(6) See the chiral organocatalysts used in our preliminary experi-
ments: (a) Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am.
Chem. Soc. 2004, 124, 9558. (b) Inokoishi, Y.; Sasakura, N.;
Nakano, K.; Ichikawa, Y.; Kotsuki, H. Org. Lett. 2010, 12, 1616.
(c) Moritaka, M.; Miyamae, N.; Nakano, K.; Ichikawa, Y.;
Kotsuki, H. Synlett 2012, 23, 2554. (d) Miyamae, N.; Watanabe,
N.; Moritaka, M.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. Org.
Biomol. Chem. 2014, 12, 5847.
Acknowledgment
(7) Reviews: (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.
Chem. Rev. 2007, 107, 5471. (b) Cheong, P. H.-Y.; Legault, C. Y.;
Um, J. M.; Celebi-Ölcüm, N.; Houk, K. N. Chem. Rev. 2011, 111,
5042. (c) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.;
Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632.
(8) For a review, see: Denmark, S. E.; Beutner, G. L. Angew. Chem.
Int. Ed. 2008, 47, 1560.
(9) For selected reviews, see: (a) Jew, S.-s.; Park, H.-g. Chem.
Commun. 2009, 7090. (b) Marcelli, T.; Hiemstra, H. Synthesis
2010, 1229. (c) Yeboah, E. M. O.; Yeboah, S. O.; Singh, G. S. Tetra-
hedron 2011, 67, 1725. (d) Park, H.-g. Science of Synthesis; Asym-
metric Organocatalysis 2,; Maruoka, K., Ed.; Thieme: Stuttgart,
2012, Chap. 2.3.1, 499–549. (e) Brak, K.; Jacobsen, E. N. Angew.
Chem. Int. Ed. 2013, 52, 534. (f) Shirakawa, S.; Maruoka, K.
Angew. Chem. Int. Ed. 2013, 52, 4312.
We thank Prof. Y. Fukuyama of Tokushima Bunri University for
MS/HRMS measurements. The authors are also grateful to Ms. Megu-
mi Kosaka and Mr. Motonari Kobayashi at the Division of Instrumen-
tal Analysis, Department of Instrumental Analysis & Cryogenics,
Advanced Science Research Center, Okayama University for the ele-
mental analyses. This work was supported in part by a Grant-in-Aid
for Scientific Research on Innovative Areas ‘Advanced Molecular
Transformations by Organocatalysts’ from the MEXT (Japan) (No.
24105523 & 26105743).
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2301–2305