1676 Organometallics, Vol. 22, No. 8, 2003
Zemlyansky et al.
or two intramolecular coordination bonds4 and by some
examples of aryloxy compounds.5 It is doubtless of
interest to obtain more information on the relative
contributions of the different factors (thermodynamic
and kinetic) to the stabilization of germanium(II) and
tin(II) compounds. Herein we report the synthesis and
structures of stable, sterically nonhindered bis[2-(di-
methylamino)ethoxy]germanium and -tin M(OCH2CH2-
NMe2)2 (M ) Ge (1); M ) Sn (2)) compounds with
intramolecular coordination MrN bonds. The electronic
and molecular structures of these compounds is also
analyzed by density functional theory, and the MrN
binding energies are calculated. The X-ray study of the
previously synthesized bis{2,4,6-tris[(dimethylamino)-
methyl]phenoxy}tin (3)5c-f also is reported.
Ta ble 1. Selected Bon d Len gth s (Å) a n d An gles
(d eg) for 1-3
1a
2b
3
M-O
MrN
1.868(1), 1.864(1);
1.861(1), 1.870(1)
2.329(2), 2.337(2);
2.324(2), 2.346(2)
2.056(2)
2.071(2), 2.073(2)
2.458(2)
2.427(3), 2.478(3)
O-M-O 98.79(6); 98.91(7)
96.52(11) 91.89(9)
NfMrN 156.38(6); 156.11(6) 145.78(9) 156.56(8)
O-MrN 80.48(6), 80.78(6),
83.89(6), 84.21(6);
76.71(6),
80.68(6)
80.75(8), 81.18(9),
81.55(9), 84.10(8)
80.22(6), 81.00(6),
83.85(6), 84.00(6)
a
b
For the two independent molecules. The molecule occupies
a special position on the 2-fold axis (C2).
A more convenient method for the synthesis of 1 and
2 is the alcoholysis of Lappert’s metal amides M[N-
(SiMe3)2]2 (M ) Ge, Sn)2e by (dimethylamino)ethanol,
which occurs rapidly and in almost quantitative yield
(eq 2). This method has been used previously for the
Resu lts a n d Discu ssion
Syn th esis of Bis[2-(d im eth yla m in o)eth oxy]ger -
m a n iu m (1) a n d -tin (2). Bis[2-(dimethylamino)eth-
oxy]germanium (1) and -tin (2) were prepared by two
methods. The redistribution of the functional groups
between the divalent species MCl2 and Et3MOCH2CH2-
NMe2 (M ) Ge, Sn) readily occurs at room temperature
in THF or diethyl ether (eq 1), giving moderate yields
of compounds 1 and 2 as white, crystalline solids, which
are soluble in standard organic solvents, stable under
anaerobic conditions, and easily sublimed in vacuo.
M¨ (NSiMe3)2 + 2HOCH2CH2NMe2 f
M¨ (OCH2CH2NMe2)2 + 2HN(SiMe3)2 (2)
1, 2
preparation of bis{2,4,6-tris[(dimethylamino)methyl]-
phenoxy}tin (3) and its germanium and lead analogues.5c
1
In the H NMR spectra of compounds 1 and 2, recorded
at room temperature in benzene-d6 or toluene-d8 solu-
tions, the OCH2CH2N signals appear as triplets and
those of the methyl groups on the nitrogen atoms as
singlets. The signals in the spectrum of 1 are noticeably
broadened, suggesting that a fairly rapid process occurs
in solution, during which the MrN coordination bonds
open and close (see below). The study of the dynamic
NMR spectra over a wide temperature interval is now
in progress.
Molecu la r a n d Cr ysta l Str u ctu r es of Bis[2-(d i-
m eth yla m in o)eth oxy]ger m a n iu m (1) a n d -tin (2).
The X-ray diffraction study showed that compounds 1
and 2 are monomers. These are the first structurally
characterized monomeric germanium(II) and tin(II)
compounds stabilized by only two intramolecular GerN
coordination bonds in the absence of steric shielding of
the metal atoms (Figures 1 and 2). The MIIrN bond
lengths are 2.329(2), 2.337(2) Å and 2.324(2), 2.346(2)
Å for two independent molecules of 1 and 2.458(2) Å
for 2 (Table 1). The GeII-N bond lengths for 1 are
considerably larger than the lengths of all the previously
known GeIIrN coordination bonds6 (except for the
diazogermylene ArGeC(N2)SiMe3 [Ar ) 2,6-(iPr2NCH2)2-
C6H3]).7 In contrast, the SnIIr N bond lengths in 2 are
much shorter than the previously reported lengths of
axial SnIIrN bonds (range of values 2.516(3)-2.660(3)
Å).4b,c,5a,8a,b The MII-O bond lengths (1.864(1), 1.868-
(1), and 1.861(1), 1.870(1) Å for two independent mol-
ecules of 1 and 2.056(2) Å for 2 (Table 1)) are typical
MCl2 + 2Et3M′OCH2CH2NMe2 f
M¨ (OCH2CH2NMe2)2 + 2Et3M′Cl (1)
1, 2
1: MCl2 ) GeCl2‚(dioxane), M′ ) Ge
2: M, M′ ) Sn
(4) Selected examples: (a) Drost, C.; Hitchcock, P. B.; Lappert, M.
F.; Pierssens, L. J .-M. Chem. Commun. 1997, 1141. (b) J astrzebski, J .
T. B. H.; van der Schaaf, P. A.; Boersma, G.; van Koten, G.; Heijdenrijk,
D.; Goubitz, K.; de Ridder, D. J . A. J . Organomet. Chem. 1989, 367,
55. (c) Angermund, K.; J onas, K.; Kru¨ger, C.; Latten, J . L.; Tsay, Y.-
H. J . Organomet. Chem. 1988, 353, 17. (d) Schmidt, H.; Keitemeyer,
S.; Neumann, B.; Stammler, H.-F.; Schnoeller, W. W.; J utzi, P.
Organometallics 1998, 17, 2149. (e) J utzi, P.; Keitemeyer, S.; Neumann,
B.; Stammler, H.-G. Organometallics 1999, 18, 4778. (f) Leung, W.-P.;
Kwok, W.-H.; Weng, L.-H.; Law, L. T. C.; Zhou, Z. Y.; Mak, T. C. W. J .
Chem. Soc., Dalton Trans. 1997, 4301. (g) Engelhardt, L. M.; J olly, B.
S.; Lappert, M. F.; Raston, C. L.; White, A. H. J . Chem. Soc., Chem.
Commun. 1988, 336. (h) Ossing, G.; Meller, A.; Bronneke, C.; Muller,
O.; Schafer, M.; Herbst-Irmer, R. Organometallics 1997, 16, 2116. (i)
Cardin, C. J .; Cardin, D. J .; Constantine, S. P.; Todd, A. K.; Teat, S.
J .; Coles, S. Organometallics 1998, 17, 2144. (j) Cardin, C. J .; Cardin,
D. J .; Constantine, S. P.; Drew, M. G. B.; Rashid, H.; Convery, M. A.;
Fenske, D. J . Chem. Soc., Dalton Trans. 1998, 2749. (k) Benet, S.;
Cardin, C. J .; Cardin, T. J .; Constantine, S. P.; Heath, P.; Rashid, H.;
Teixeira, S.; Thorpe, J . H.; Todd, A. K. Organometallics 1999, 18, 389.
(l) J olly, B. S.; Lappert, M. F.; Engelhardt, L. M.; White, A. H. J . Chem.
Soc., Dalton Trans. 1993, 2653. (m) Al-J uaid, S. S.; Avent, A. G.;
Eaborn, C.; Hill, M. S.; Hitchcock, P. B.; Patel, D. J .; Smith, J . D.
Organometallics 2001, 20, 1223. (n) J utzi, P.; Keitemeyer, S.; Neu-
mann, B.; Stammler, A.; Stammler, H.-J . Organometallics 2001, 20,
42.
(5) (a) Atwood, D. A.; J egier, J . A.; Martin, K. J .; Rutherford, D. J .
Organomet. Chem. 1995, 503, C4. (b) Van den Bergen, A. M.; Cashion,
J . D.; Fallon, G. D.; West, B. O. Aust. J . Chem. 1995, 43, 1559. (c)
Barrau, J .; Rima, G.; El Amraoui, T. Organometallics 1998, 17, 607.
(d) Barrau, J .; Rima, G.; El Amraoui, T. J . Organomet. Chem. 1998,
570, 163. (e) Barrau, J .; Rima, G.; El Amraoui, T. Inorg. Chim. Acta
1996, 241, 9. (f) Agustin, D.; Rima, G.; Gornitzka, H.; Barrau, J . Main
Group Met. Chem. 1999, 22, 703. (g) Kitamura, C.; Yoneda, A.; Sugiura,
K.-I.; Sakata Y. Acta Crystallogr., Sect. C 1999, 55, 876. (h) Kuchta,
M. C.; Hahn, J . M.; Parkin, G. J . Chem. Soc., Dalton Trans. 1999, 3559.
(i) Kitamura, C.; Maeda, N.; Kamada, N.; Ouchi, M.; Yoneda A. J .
Chem. Soc., Perkin Trans. 1 2000, 78.
(6) Cambridge Crystallographic Database. Release 2002; Cambridge,
U.K.
(7) Bibal, C.; Mazieres, S.; Gornitzka, H.; Couret, C. Angew. Chem.,
Int. Ed. 2001, 40, 952.
(8) (a) J astrzebski, J . T. B. H.; van der Schaaf, P. A.; Boersma, J .;
van Koten, G.; Zoutberg, M. C.; Heijdenrijk, D. Organometallics 1989,
8, 1373. (b) J acob, K.; Seidel, N.; Voigt, F.; Fischer, A.; Pietzsch, C.;
Holecek, J .; Lycka, A.; Fontani, M.; Grigiotti, E.; Zanello, P. J . Prakt.
Chem.-Chem. Z. 2000, 342, 574.