938
Y. Imada et al. / Tetrahedron Letters 48 (2007) 937–939
O
O
N
Et
N
N
NH
NH
H
H
N
N
N
O
O
N
O
2ClO4
F
N (CH2)n
a
d, e
b, c
(CH2)n
(CH2)n
N
N
N
N
N
O
NO2
NO2 O2N
NH
NH
N
O
Et
O
2a, n = 5, 99%
2b, n = 8, 90%
2c, n = 12, 69%
3a, n = 5, 93%
3b, n = 8, 90%
3c, n = 12, 65%
1a, n = 5, 20%
1b, n = 8, 84%
1c, n = 12, 39%
Scheme 1. Synthesis of bisflavinium perchlorate 1. Reagents and conditions: (a) NH2(CH2)nNH2, Na2CO3, DMSO, 140 ꢁC, overnight; (b) Zn,
AcOH, 60 ꢁC, 1 h; (c) alloxan monohydrate, B(OH)3, AcOH, rt, overnight; (d) CH3CHO, NaBH3CN, Na2S2O4, DMF, 60 ꢁC, 3 h and (e) HClO4,
NaNO2, NaClO4, NH3 aq, H2O, rt, 1 h.
tron transfer.5b,9 This equilibration reduces the concen-
tration of 8, which leads to retardation of the rate-
determining dehydration of the present catalytic cycle.
Thus, the higher catalytic activity of 1c is ascribed to
specifically mobile flavin moieties arising from long
methylene spacer. Further studies are currently under-
way to obtain detailed mechanistic information.
Table 1. Bisflavin-catalyzed oxidation of sulfidesa
Substrate
Catalyst
Time (h)
Yieldb (%)
96
S
Me
1a
5
4
Me
4
4
1b
1c
5
5
97
97
S
Me
Acknowledgment
1a
6
99
5
This work was supported by a Grant-in-Aid for Scien-
tific Research from the Ministry of Education, Science,
Sports and Culture, Japan.
5
1b
1c
1a
1b
1c
1a
1b
1c
6
6
4
4
4
6
6
6
93
99
90
96
97
88
99
99
5
(C4H9)2S 6
6
6
(C8H17)2S 7
7
7
References and notes
1. (a) Strukul, G. Catalytic Oxidations with Hydrogen Perox-
ide as Oxidant; Kluwer Academic: Dordrecht, 1992; (b)
Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43,
5138.
a The oxidation was carried out in the presence of a catalyst (1 mol %)
and 30% H2O2 (1.1 equiv) in MeOH (1 mL) at 25 ꢁC.
b Isolated yields.
2. (a) Shu, L.; Shi, Y. Tetrahedron Lett. 1999, 40, 8721; (b)
Shu, L.; Shi, Y. J. Org. Chem. 2000, 65, 8807; (c) Shi, Y.
Acc. Chem. Res. 2004, 37, 488.
3. (a) Page, P. C. B.; Heer, J. P.; Bethell, D.; Collington, E.
W.; Andrews, D. M. Tetrahedron Lett. 1994, 35, 9629; (b)
Page, P. C. B.; Bethell, D.; Stocks, P. A.; Heer, J. P.;
Graham, A. E.; Vahedi, H.; Healy, M.; Collington, E. W.;
Andrews, D. M. Synlett 1997, 1355.
+
FlEt
FlEtOH
9
SubO
Sub
4. (a) Murahashi, S.-I.; Oda, T.; Masui, Y. J. Am. Chem. Soc.
1989, 111, 5002; (b) Minidis, A. B. E.; Ba¨ckvall, J.-E. Chem.
+
+
FlEt
FlEtOH
8
FlEt
FlEtOOH
´
Eur. J. 2001, 7, 297; (c) Linden, A. A.; Kruger, L.; Ba¨ckvall,
¨
J.-E. J. Org. Chem. 2003, 68, 5890; (d) Bergstad, K.;
Ba¨ckvall, J.-E. J. Org. Chem. 1998, 63, 6650; (e) Mazzini,
C.; Lebreton, J.; Furstoss, R. J. Org. Chem. 1996, 61, 8; (f)
Murahashi, S.-I.; Ono, S.; Imada, Y. Angew. Chem., Int.
Ed. 2002, 41, 2366.
H+
H+
H2O
5. (a) Leonard, N. J.; Lambert, R. F. J. Org. Chem. 1969, 34,
3240; (b) Yano, Y.; Ohya, E. Chem. Lett. 1983, 1281.
6. Ghisla, S.; Hartmann, U.; Hemmerich, P. J. Liebigs Ann.
Chem. 1973, 1388.
H2O2
+
+
FlEt
FlEt
Scheme 2. Proposed mechanism for the bisflavin-catalyzed oxidation
with H2O2.
7. Characterization data for 1. Compound 1a: UV (aceto-
nitrile) kmax (loge) 346 (4.13), 539 (3.80) nm; IR (KBr) 1650
(C@O) cmꢀ1
; HRMS (FAB) calcd for C29H31O4N8
(Mꢀ2ClO4ꢀ+H+) 555.2468. Found 555.2446. Compound
1b: UV (acetonitrile) kmax (loge) 329 (4.07), 541 (3.82) nm;
IR (KBr) 1663 (C@O) cmꢀ1; HRMS (FAB) calcd for
similar oxygen transfer to substrates, bisflavin catalysts
are converted into partially hydroxylated species 8,
which is in fast equilibrium with species 9 via single elec-