K. M. Brashear et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3483–3486
3485
saponification provided the tetrahydronaphthyridinyl
tricyclic acid 17.
Table 3. Pharmacokinetic data for selected compounds following
oral and iv dosing in dogs
Entry
F (%)
CI (mL/min/kg)
T1/2
Syntheses of the tetrahydronaphthyridinyl-pentanoic
acid side chain and its 3-cyclopropyl derivative, as well
as the b-substituted b-alanines, have been previously
described.12
1-4B
1-4A
2-3
2-5
2-6
99
47
40
1.1
18
2.0
6.6
13.7
18.9
10.3
3.5
4.7
0.7
1.1
1.6
Results and Discussion
Compounds were evaluated for their ability to inhibit
the binding of a high affinity radioligand to human
avb3 immobilized on scintillation proximity beads
(SPAV3).13 Table 1 depicts a comparison of the IC50
values in this assay for the corresponding 2- and 3-aryl-
substituted chain-shortened analogues. With the excep-
tion of 1-1B, all of the 3-aryl analogues were tested as
the single (S)-enantiomer. The racemic 2-aryl analogues
exhibited in vitro potencies that were comparable to or
better than the corresponding 3-aryl analogues. Inter-
estingly, the rank order for the aryl substituents is the
same in both series, suggesting that in both cases the
aryl substituents might be accessing the same binding
site in the receptor.
Table 3. Entry 1-4B, the 3-substituted dihy-
drobenzofuran analogue, demonstrated excellent oral
bioavailability with low clearance and a moderate
half-life. The 2-aryl analogue 1-4A also demonstrated
good oral bioavailability, with low clearance and an
improved half-life. The cyclopropyl analogue 2–3 dis-
played good oral bioavailability, but also possessed a
greatly reduced half-life. The tricyclic analogues 2–5
and 2–6 displayed low oral bioavailability and short
half-lives.
Conclusion
In summary, we have identified a new class of highly
potent, non-peptide avb3 receptor antagonists, with
favorable pharmacokinetic profiles, where a 2-aryl
b-amino acid functions as a potent aspartic acid repla-
cement. In particular, analogue 1-4A shows improved
(3-fold) binding affinity for the avb3 receptor versus 1-4B,
while maintaining a good pharmacokinetic profile. Fur-
ther improvements in potency were realized in this series
through substitution on the tetrahydronaphthyridine
moiety, incorporation of a tricyclic N-terminus, or
methylation of the amide moiety.
Further potency enhancements were investigated in the
2-aryl series (Table 2). The N-methyl amide analogue 2-2
did not significantly increase SPAV3 potency over the
N–H analogue. The 3-cyclopropyl analogue 2-3 gave a
significant 3-fold increase in potency. However, incor-
poration of these two substitutions (2-4) did not provide
a further increase in potency. Although the constrained
tricyclic analogue 2-5 did not provide an increase in
potency over 1-4A, the corresponding N-methyl amide
tricyclic did afford a 3-fold increase in SPAV3 potency.
Pharmacokinetic data following oral and iv dosing in
dogs for selected compounds are summarized in
References and Notes
1. (a) Compston, J. E. Drugs 1997, 53, 727. (b) Kanis, J. A.;
Delmas, P.; Burckhardt, P.; Cooper, C.; Torgerson, D. Osteo-
porosis Int. 1997, 7, 390.
Table 2. Additional structural modifications and their associated
SPAV3 binding affinities
2. Duong, L. T.; Rodan, G. A. Front. Biosci. 1998, 3, 757.
3. (a) Crippes, B. A.; Engleman, V. W.; Settle, S. L.; Delarco,
J.; Ornberg, R. L.; Helfrich, M. H.; Horton, M. A.; Nikols,
G. A. Endocrinology 1996, 137, 918. (b) Yamamoto, M.;
Fisher, J. E.; Gentile, M.; Seedor, J. G.; Leu, C. T.; Rodan,
S. B.; Rodan, G. A. Endocrinology 1998, 139, 1411. (c) Lark,
M. W.; Stroup, G. B.; Hwang, S. M.; James, I. E.; Rieman,
D. J.; Drake, F. H.; Bradbeer, J. N.; Mathur, A.; Erhard,
K. F.; Newlander, K. A.; Ross, S. T.; Salyers, K. L.; Smith,
B. R.; Miller, W. H.; Huffman, W. F.; Gowen, M. J. Pharm.
Exp. Therap. 1999, 291, 612.
Entry
R1
R2
R3
SPAV3, IC50 (nM)
1–4A
2–2
2–3
H
H
H
H
H
H
CH3
H
1.01
0.74
0.29
4. Coleman, P. J.; Askew, B. C.; Hutchinson, J. H.; Whitman,
D. B.; Perkins, J. J.; Hartman, G. D.; Rodan, G. A.; Leu, C.
T.; Prueksaritanont, T.; Fernandez-Metzler, C.; Merkle, K.
M.; Lynch, R.; Lynch, J. J.; Rodan, S. B.; Duggan, M. E.
Bioorg. Med. Chem. Lett. 2002, 12, 2463.
5. (a) Duggan, M. E.; Naylor-Olsen, A. M.; Perkins, J. J.;
Anderson, P. S.; Chang, C. T.-C.; Cook, J. J.; Gould, R. J.;
Ihle, N. C.; Hartman, G. D.; Lynch, J. J.; Lynch, R. J.;
Manno, P. D.; Schaffer, L. W.; Smith, R. L. J. Med. Chem.
1995, 38, 3332. (b) Askew, B. C.; McIntyre, C. A.; Hunt, C. A.;
Claremon, D. A.; Gould, R. J.; Lynch, R. J.; Armstrong, D. J.
Bioorg. Med. Chem. Lett. 1996, 6, 339.
2–4
2–5
2–6
H
CH3
H
0.49
0.72
0.35
CH3