T. Hosoya et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3263–3265
3265
K. O.; Bryant, S. H. Naunyn-Schmiedeberg’s Arch. Pharmacol.
1972, 274, 107. (d) Ellis, K. O.; Carpenter, J. F. Naunyn-
Schmiedeberg’s Arch. Pharmacol. 1972, 275, 83.
9. (a) Ikemoto, T.; Endo, M. Br. J. Pharmacol. 2001, 134, 719.
(b) Ikemoto, T.; Hosoya, T.; Aoyama, H.; Kihara, Y.; Suzuki,
M.; Endo, M. Br. J. Pharmacol. 2001, 134, 729.
10. Palnitker et al. recently reported the synthesis of tritium
labeled 2 and identified 160/172 kDa proteins in procine/rab-
bit SR, which are the endogenously cleaved NH2-terminus
parts of RyR1. We independently synthesized 2 and found it
to be a non-selective inhibitor for both Ca2+ release modes as
is 1. (a) Palnitkar, S. S.; Bin, B.; Jimenez, L. S.; Morimoto, H.;
Williams, P. G.; Paul-Pletzer, K.; Parness, J. J. Med. Chem.
1999, 42, 1872. (b) Paul-Pletzer, K.; Palnitkar, S. S.; Jimenez,
L. S.; Morimoto, H.; Parness, J. Biochemistry 2001, 40, 531.
11. We intended to radiolabel these compounds by tritium
according to ref 10a.
12. All new compounds were characterized by spectroscopic
means. 5: Yellow solid; TLC Rf=0.63 (n-hexane/EtOAc=1:2);
1H NMR (400 MHz, CDCl3) d 4.31 (s, 2H), 4.68 (s, 2H), 6.97 (d,
1H, J=3.8), 6.99 (d, 1H, J=3.8), 7.07 (dd, 1H, J=2.0, 1.5Hz),
7.32 (dd, 1H, J=1.5, 2.0 Hz), 7.56 (dd, 1H, J=1.5, 1.5 Hz), 7.86–
7.91 (AA0BB0, 2H), 8.01 (s, 1H), 8.25–8.29 (AA0BB0, 2H); 13C
NMR (100 MHz, CDCl3) d 41.6, 49.0, 94.8, 111.0, 115.7,
119.2, 124.4 (2C), 124.7 (2C), 127.8, 134.1, 135.18, 135.22,
Scheme 3. Synthesis of [125I]GIF-0082 ([125I]-5) and [125I]GIF-0276
([125I]-6): (a) (n-Bu3Sn)2, (Ph3P)4Pd (cat.), DME, 90 ꢁC, (14; 22 h, 55%,
15; 5.5 h, 41%); (b) Na125I, Chloramine-T, DMF–H2O (3:1), room tem-
perature, ([125I]-5; 17 h, 61–97%, [125I]-6; 20 h, 31% radiochemical yields).
138.6, 141.8, 147.1, 150.2, 152.6, 153.6, 166.0; IR (KBr, cmꢂ1
)
851, 992, 1130, 1148, 1202, 1238, 1331, 1445, 1510, 1566, 1597,
1723, 1781, 2122; UV (EtOH, nm) lmax (log e) 298 (3.66), 309
(3.65), 381 (3.94). Anal. calcd for C21H14N7O5I: C, 44.15; H,
2.47; N, 17.16. Found: C, 43.93; H, 2.48; N, 17.14. 6: Yellow
solid; TLC Rf=0.35( n-hexane/EtOAc=1:1); 1H NMR
(400 MHz, CDCl3) d 4.30 (s, 2H), 4.69 (s, 2H), 6.97 (d, 1H,
J=3.6 Hz), 6.99 (d, 1H, J=3.6 Hz), 7.24 (dd, 1H, J=1.2,
1.5Hz), 7.50 (dd, 1H, J=1.2, 1.5Hz), 7.86 (dd, 1H, J=1.5,
1.5Hz), 7.86–7.90 (AA 0BB0, 2H), 8.01 (s, 1H), 8.25–8.29
(AA0BB0, 2H); 13C NMR (100 MHz, CDCl3+DMSO-d6) d
26.7 (2J(19F–13C)=41.1 Hz), 40.5, 47.5, 93.8, 110.4, 114.6,
120.6 (1J(19F–13C)=273.1 Hz), 123.2 (2C), 123.5(2C), 125.3,
129.9, 133.0, 133.8, 134.2, 137.4, 137.9, 145.6, 149.3, 151.5,
151.9, 165.3; 19F NMR (372 MHz, CDCl3) d 12.65(s, 3F); IR
(KBr, cmꢂ1) 741, 754, 853, 1150, 1179, 1202, 1246, 1333, 1412,
1441, 1510, 1599, 1728, 1782; UV (EtOH, nm) lmax (log e) 309
(4.24), 323 (4.22), 379 (4.55). Anal. calcd for C23H14N6O5F3I:
C, 43.28; H, 2.21; N, 13.17. Found: C, 43.06; H, 2.21; N, 13.31.
13. The effect for PCR was evaluated by the twitch tension of
intact mouse skeletal muscle. The CICR rates were quantified
by the amount of Ca2+ released using microfluorometry of
Fura-2, a Ca2+ indicator, in skinned fibers prepared from
mouse skeletal muscle. For the methods of biological evalua-
tion, see ref 9.
Acknowledgements
We thank Prof. Dr. Michio Ui, Prof. Dr. Shunji Natori,
Dr. Toshiyuki Fujioka, and Dr. Nobuko Akiyama at
RIKEN Institute for their kind support. We are grateful
to Mr. Kin-ichi Oyama of Nagoya University Chemical
Instrument Center for performing the mass spectra
analysis. This work was supported in part by a Grant-
in-Aid for Creative Scientific Research (No. 13NP0401)
of the Ministry of Education, Culture, Sports, Science
and Technology (MEXT) of Japan.
References and Notes
1. Simmons, R. M., Ed. Muscular Contraction. Cambridge
University Press: New York, 1992.
2. Endo, M. Curr. Top. Membr. Transp. 1985, 25, 181.
3. (a) Ikemoto, T.; Endo, M. In Pharmacology of Ionic Chan-
nel Function. Activators and Inhibitors; Endo, M.; Kurachi, Y.;
Mishina, M., Eds.; Springer: Berlin, 2000; p 583. (b) Iino, M.
Jpn. J. Physiol. 1999, 49, 325.
14. Vaidyanathan, G.; Shankar, S.; Zalutsky, M. R. Bio-
conjugate Chem. 2001, 12, 786.
15. Gallant, M.; Sawyer, N.; Metters, K. M.; Zamboni, R. J.
Bioorg. Med. Chem. 1998, 6, 63.
16. Tonnesen, G. L.; Hanson, R. N.; Seitz, D. E. Int. J. Appl.
Radiat. Isot. 1981, 32, 171.
4. Kasai, M.; Kawasaki, T.; Yamaguchi, N. Biophys. Chem.
1999, 82, 173, and references cited therein.
5. Dorman, G. In Bioorganic Chemistry of Biological Signal
Transduction. Topics in Current Chemistry 211; Waldmann H.,
Ed.; Springer: Berlin, 2001; p 169, and references cited therein.
6. (a) Snyder, H. R., Jr.; Davis, C. S.; Bickerton, R. K.; Hal-
liday, R. P. J. Med. Chem. 1967, 10, 807. (b) Davis, C. S.;
Snyder, H. R., Jr. US Patent 3,415,821, 1968. (c) Ward, A.;
Chaffman, M. O.; Sorkin, E. M. Drugs 1986, 32, 130.
7. (a) Harrison, G. G. Br. J. Anesthesiol. 1975, 47, 62. (b)
Kolb, M. E.; Horne, M. L.; Martz, R. Anesthesiology 1982, 56,
254. (c) MacLennen, D. H.; Phillips, M. S. Science 1992, 256,
789.
17. Before handling the radioisotope, the reproducibility of
the reaction was confirmed by examining iododestannylation
under ‘cold’ conditions similar to the actual conditions used.
18. We confirmed from the TLC analysis that [125I]-5 was
completely decomposed by photoirradiation by UV-light
(254nm, 16W UV-lamp, from the distance of 1 cm) within 60 s
under the actual photolabeling conditions. On the other hand,
[
125I]-6 required rather longer irradiation time (10 min) for
complete decomposition even using the 100 W UV-lamp
(365nm).
8. (a) Endo, M. In Simmons R. M., Ed. Muscular Contrac-
tion; Cambridge University Press, New York, 1992.; p 67. (b)
Ohta, T.; Endo, M. Proc. Jpn. Acad. 1986, 62, 76. (c) Ellis,
19. Actually, we have succeeded in capturing novel molecules
by using these specific photoaffinity probes. Their structures
and functions will be reported separately in due course.