10.1002/anie.201914221
Angewandte Chemie International Edition
COMMUNICATION
Bioorg. Med. Chem. 2013, 21, 4793–4802; h) S. Johnson, A. K. Bagbi,
F. Tanaka J. Org. Chem. 2018, 83, 4581–4597; i) F. Zhu, J. Rodriguez,
S. O’Neill, M. A. Walczak, ACS Cent. Sci. 2018, 4, 1652–1662.
W. Disadee, C. Mahidol, P. Sahakitpichan, S. Sitthimonchai, S.
Ruchirawat, T. Kanchanapoom, Phytochemistry 2012, 74, 115–122.
a) R. R. Schmidt, M. Hoffmann, Angew. Chem. 1983, 95, 417–418; b) A.
O. Stewart, R. M. Williams, J. Am. Chem. Soc. 1985, 107, 4289–4296;
c) P. Allevi, M. Anastasia, P. Ciuffreda, A. Fiecchi, A. Scala, J. Chem.
Soc., Chem. Comm. 1987, 1245–1246.
We propose that this C-glycosylation proceeds through a SN2-
like displacement of an -glycosyl sulfonate. To rule out the
possibility of a base-catalyzed epimerization[8] of the α-C-
glycoside in situ, we turned to primary 13C kinetic isotope
studies.[23] Using Jacobsen and Kwan's modification[24] of the
Singleton procedure,[25] we measured a KIE value of 1.029 for the
reaction. This value is typical of SN2-like glycosylations,[26] and is
in line with values that have previously been reported by the Crich,
Chan and Bennet, and our own groups.[17d, 27]
[6]
[7]
[8]
[9]
P. Allevi, M. Anastasia, P. Ciuffreda, A. Fiecchi, A. Scala, J. Chem. Soc.,
Perkin Trans. 1 1989, 1275–1280.
In summary, we have developed an efficient and highly
stereoselective approach to β-C-homoacyl and β-C-acyl
glycosides. The protocol, which employs bench-stable
hemiacetals as donors, tolerates a range of substrates, including
heterocycle-containing nucleophiles. These C-alkyl glycosides
can be transformed into a variety of different products, including
C-analogs of glycolipids and disaccharides. We anticipate that
this chemistry will find board utility both in natural product and
medicinal C-glycoside synthesis.
a) F. Rodrigues, Y. Canac, A. Lubineau, Chem. Comm. 2000, 2049–
2050; b) B. Voigt, A. Matviitsuk, R. Mahrwald, Tetrahedron 2013, 69,
4302–4310; c) S. Johnson, A. K. Bagdi, F. Tanaka, J. Org. Chem. 2018,
83, 4581–4597.
[10] P. Pasetto, M. C. Walczak, Tetrahedron 2009, 65, 8468–8477.
[11] A. Ranoux, L. Lemiègre, M. Benoit, J.-P. Guégan, T. Benvegnu, Eur. J.
Org. Chem. 2010, 2010, 1314–1323.
[12] For earlier studies on transition metal catalysed C-glycoside synthesis
see: a) J. Ye, R. K. Bhatt, J. R. Falck, Tetrahedron Lett 1993, 34, 8007–
8010; b) J. Ye, R. K. Bhatt, J. R. Falck, J. Am. Chem. Soc. 1994, 116, 1–
5; c) Y. Y. Belosludtsev, R. K. Bhatt, J. R. Falck, Tetrahedron Lett. 1995,
36, 5881–5882; d) J. R. Falck, R. K. Bhatt, J. Ye, J. Am Chem. Soc. 1995,
117, 5973–5982.
Acknowledgements
[13] G. J. Boehlich, N. Schützenmeister, Angew. Chem., Int. Ed. 2019, 58,
5110–5113; Angew. Chem. 2019, 131, 5164–5167.
We thank NIGMS (No.: 1U01GM120414) for their generous
support. Furthermore, we thank Dr. Minghua Zhuo for her support
in reaction optimzation.
[14] a) C. Zhao, X. Jia, X. Wang, H. Gong, J. Am. Chem. Soc. 2014, 136,
17645–17651; b) S. O. Badir, A. Dumoulin, J. K. Matsui, G. A. Molander,
Angew. Chem., Int. Ed. 2018, 57, 6610–6613; Angew. Chem. 2018, 130,
6320–6723.
[15] a) N. E. S. Guisot, I. Ella Obame, P. Ireddy, A. Nourry, C. Saluzzo, G.
Dujardin, D. Dubreuil, M. Pipelier, S. Guillarme, J. Org. Chem. 2016, 81,
2364–2371; b) I. Ella Obame, P. Ireddy, N. E. S. Guisot, A. Nourry, C.
Saluzzo, G. Dujardin, D. Dubreuil, M. Pipelier, S. Guillarme, Eur. J. Org.
Chem. 2018, 2018, 1735–1738.
Keywords: carbohydrate• C-glycosides • diastereoselectivity •
C-glycosylation • glycosyl sulfonate
[1]
[2]
a) A. Varki, Glycobiology 1993, 3, 97–130; b) R. A. Dwek, Chem. Rev.
1996, 96, 683–720; c) A. Varki, Glycobiology 2017, 27, 3–49; d) F. Berti,
R. Adamo, Chem. Soc. Rev. 2018, 47, 9015–9025.
[16] a) A. Dondoni, A. Marra, Tetrahedron Lett. 2003, 44, 13–16; b) A.
Dondoni, N. Catozzi, A. Marra, J. Org. Chem. 2005, 70, 9257–9268.
[17] a) J. P. Issa, D. Lloyd, E. Steliotes, C. S. Bennett, Org. Lett. 2013, 15,
4170–4173; b) J. P. Issa, C. S. Bennett, J. Am. Chem. Soc. 2014, 136,
5740–5744; c) D. Lloyd, C. S. Bennett, Chem.–Eur. J. 2018, 24, 7610–
7614; d) M.-H. Zhuo, D. J. Wilbur, E. E. Kwan, C. S. Bennett, J. Am.
Chem. Soc. 2019, 141, 16743–16754.
a) F. Nicotra, in Glycoscience Synthesis of Substrate Analogs and
Mimetics (Eds.: H. Driguez, J. Thiem), Springer: Berlin, Heidelberg, 1998,
pp. 55–83; b) C.-H. Lin, H.-C. Lin, W.-B. Yang, Curr. Top. Med. Chem.
2005, 5, 1431–1457; c) G. H. Philip, Curr. Top. Med. Chem. 2005, 5,
1299–1331; d) Z. Wei, Curr. Top. Med. Chem. 2005, 5, 1363–1391.
a) C. R. Bertozzi, D. G. Cook, W. R. Kobertz, F. Gonzalez-Scarano, M.
D. Bednarski, J. Am. Chem. Soc. 1992, 114, 10639–10641; b) A. Wei, K.
M. Boy, Y. Kishi, J. Am. Chem. Soc. 1995, 117, 9432–9436; c) J.
Schmieg, G. Yang, R. W. Franck, M. Tsuji, J. Exp. Med. 2003, 198,
1631–1641; d) G. Yang, J. Schmieg, M. Tsuji, R. W. Franck, Angew.
Chem., Int. Ed 2004, 43, 3818–3822; Angew. Chem. 2004, 116, 3906–
3910 e) A. Cavezza, C. Boulle, A. Guéguiniat, P. Pichaud, S. Trouille, L.
Ricard, M. Dalko-Csiba, Bioorg. Med. Chem. Lett. 2009, 19, 845–849.
a) M. H. D. Postema, J. L. Piper, L. Liu, V. Komanduri, R. L. Betts, in
Glycomimetics: Modern Synthetic Methodologies, Vol. 896, American
Chemical Society, 2005, pp. 23-51; b) K. Lalitha, K. Muthusamy, Y. S.
Prasad, P. K. Vemula, S. Nagarajan, Carbohydr. Res. 2015, 402, 158–
171; c) Y. Yang, B. Yu, Chem. Rev. 2017, 117, 12281–12356; d) H. Liao,
J. Ma, H. Yao, X.-W. Liu, Org. Biomol. Chem. 2018, 16, 1791–1806.
For representative examples see: a) C.-H. Wong, F. Moris-Varas, S.-C.
Hung, T. G. Marron, C.-C. Lin, K. W. Gong, G. Weitz-Schmidt, J. Am.
Chem. Soc. 1997, 119, 8152–8158; b) A. Dondoni, A. Marra, Chem.
Commun. 1999, 2133–2145; c) G. Chen, M. Chien, M. Tsuji, R. W.
Franck, ChemBioChem 2006, 7, 1017–1022; d) R. W. Denton, K. A. Tony,
J. J. Hernández-Gay, F. J. Cañada, J. Jiménez-Barbero, D. R. Mootoo,
Carbohydr. Res. 2007, 342, 1624–1635; e) D. C. Koester, A. Holkenbrink,
D. B. Werz, Synthesis 2010, 3217–3234; f) Z. Liu, A. N. Courtney, L. S.
Metelista, R. Bittman, ChemBioChem 2012, 13, 1733–1737; g) Y. Geng,
A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R. Schmidt,
[3]
[18] a) Z. Zhang, I. R. Ollmann, X.-S. Ye, R. Wischnat, T. Baasov, C.-H. Wong,
J. Am Chem. Soc. 1999, 121, 734–753; b) T. K. Ritter, K.-K. T. Mong, H.
Liu, T. Nakatani, C.-H. Wong, Angew. Chem., Int. Ed. 2003, 42, 4657–
4660; Angew. Chem. 2003, 115, 4805–4808.
[19] a) O. Achmatowicz, P. Bukowski, B. Szechner, Z. Zwierzchowska, A.
Zamojski, Tetrahedron 1971, 27, 1973–1996; b) J. M. Harris, M. D.
Keranen, G. A. O'Doherty, J. Org. Chem. 1999, 64, 2982–2983; c) J. M.
Harris, M. Li, J. G. Scott, G. A. O'Doherty, in Strategies and Tactics in
Organic Synthesis, Vol. 5 (Ed.: M. Harmata), Academic Press, 2004, pp.
221–253. d) W. Song, S. Wang, W. Tang, Chem.–Asian J. 2017, 12,
1027–1042.
[4]
[5]
[20] A. Quintard, J. Rodriguez, ACS Catalysis 2017, 7, 5513–5517.
[21] R. S. Babu, Q. Chen, S.-W. Kang, M. Zhou, G. A. O’Doherty, J. Am.
Chem. Soc. 2012, 134, 11952–11955.
[22] A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, J. Am. Chem.
Soc. 1996, 118, 2521–2522.
[23] See SI for further information.
[24] E. E. Kwan, Y. Park, H. A. Besser, T. L. Anderson, E. N. Jacobsen, J.
Am. Chem. Soc. 2017, 139, 43–46.
[25] D. A. Singleton, A. A. Thomas, J. Am. Chem. Soc. 1995, 117, 9357–9358.
[26] P. J. Berti, K. S. E. Tanaka, in Advances in Physical Organic Chemistry,
Vol. 37, Academic Press, 2002, pp. 239–314.
This article is protected by copyright. All rights reserved.