3598
H. K. Smith et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3595–3599
75–100 mM). These data suggest that the nature of the
peptidic backbone contributes to inhibitory activity.
antibacterial activity but we have shown elsewhere3 that
improvements in antibacterial activity cannot necessa-
rily be attributed to improvements in enzyme inhibition.
Other factors that affect drug distribution such as bac-
terial membrane permeability, efflux and metabolism are
clearly important in determining antibacterial activity.
The phosphinic acid 11 and phosphinic acid 22, which
could potentially bind in a bidentate fashion to the
metal centre thus forming a 4-membered ring, or alter-
natively behave as a transition-state mimic, as proposed
by Pei et al.6a with theirphosphonates, were inactive in
ourassays.
Acknowledgements
Overall, the results provided in Table 1 demonstrate
that the N-formyl hydroxylamine and hydroxamic acid
represent the optimum metal chelating groups for the
pseudopeptidic backbone of BB-3497 in terms of PDF
inhibition and antibacterial activity. Other metal bind-
ing group analogues such as the hydrazide 7 and the
carboxylic acid 5, which were weak PDF inhibitors,
were not potent enough to exert an antibacterial effect.
We thank Drs. Andy Ayscough, Mario Lobell and Jac
Wijkmans of British Biotech for useful discussions.
References and Notes
1. (a) Adams, J. M.; Capecchi, M. Proc. Natl. Acad. Sci.
U.S.A. 1966, 55, 147. (b) Adams, J. M. J. Mol. Biol. 1968, 33,
571.
A diagrammatic representation of the X-ray structure
forBB-3497 bound to the active site of the E. coli PDF
enzyme is shown in Figure 3.3 Based on this and our
structure of the PDF-actinonin complex,3 we predict
that 6 binds in a similarbidentate mode.
2. (a) Pei, D. Emerg. Ther. Targets 2001, 5, 23. (b) Giglione,
C.; Meinnel, T. Emerg. Ther. Targets 2001, 5, 41. (c) Yuan, Z.;
Trias, J.; White, R. J. Drug Discov. Today 2001, 6, 955. (d)
Clements, J. M.; Ayscough, A. P.; Keavey, K.; East, S. P.
Curr. Med. Chem. – Anti-Infective Agents 2002, 1, 239.
3. Clements, J. M.; Beckett, R. P.; Brown, A.; Catlin, G.;
Lobell, M.; Palan, S.; Thomas, W.; Whittaker, M.; Wood, S.;
Salama, S.; Baker, P. J.; Rodgers, H. F.; Barynin, V.; Rice,
D. W.; Hunter, M. G. Antimicrob. Agents Chemother. 2001,
45, 563.
In both BB-3497 and 6, the two oxygen atoms of the
metal binding group establish a bidentate coordination
to the metal centre. Additionally, they can hydrogen
bond with amino acid residues in the active site, enhan-
cing theirbinding potential to the enzyme. These
observations correlate well with the structure reported
forthe PDF.Ni enzyme bound to the substarte, Met-
Ala-Ser,17 in which two watermolecules at the active
site occupy similarpositions to the oxygen atoms in our
inhibitors. Metal binding groups other than the N-for-
myl hydroxylamine or the hydroxamic acid are weak
PDF inhibitors. In some cases this may be explained by
a relatively weak monodentate interaction whilst in
otherexamples the steirc erquierments forbackbone
and sidechain interactions may not be compatible with
the orientation necessary for efficient bidentate chela-
tion to the metal.
4. Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H.
Chem. Rev. 1999, 99, 2735.
5. (a) Chen, D. Z.; Patel, D. V.; Hackbarth, C. J.; Wang, W.;
Dreyer, G.; Young, D. C.; Margolis, P. S.; Wu, C.; Ni, Z. J.;
Trias, J.; White, R. J.; Yuan, Z. Y. Biochemistry 2000, 39,
1256. (b) Apfel, C.; Banner, D. W.; Bur, D.; Dietz, M.; Hirata,
T.; Hubschwerlen, C.; Locher, H.; Page, M. G. P.; Pirson, W.;
Rosse, G.; Specklin, J.-L. J. Med. Chem. 2000, 43, 2324. (c)
Thorarensen, A.; Deibel, M. R.; Rohrer, D. C.; Vosters, A. F.;
Yem, A. W.; Marshall, V. D.; Lynn, J. C.; Bohanon, M. J.;
Tomich, P. K.; Zurenko, G. E.; Sweeney, M. T.; Jensen, R. M.;
Nielsen, J. W.; Seest, E. P.; Dolak, L. A. Bioorg. Med. Chem.
Lett. 2001, 11, 1355.
6. (a) Hu, Y.-J.; Rajagopalan, P. T. R.; Pei, D. Bioorg. Med.
Chem. Lett. 1998, 8, 2479. (b) Meinnel, T.; Patiny, L.; Ragusa,
S.; Blanquet, S. Biochemistry 1999, 38, 4287. (c) Huntingdon,
K. M.; Yi, T.; Wei, Y.; Pei, D. Biochemistry 2000, 39, 4543. (d)
Wei, Y.; Yi, T.; Huntingdon, K. M.; Chaudhury, C.; Pei, D. J.
Comb. Chem. 2000, 2, 650. (e) Jayasekera, M. M. K.; Kendall,
A.; Shammas, R.; Dermeyer, M.; Tomala, M.; Shapiro, M. A.;
Holler, T. P. Arch. Biochem. Biophys. 2000, 381, 313.
7. Pratt, L. M.; Beckett, R. P.; Davies, S. J.; Launchbury,
S. B.; Miller, A.; Spavold, Z. M.; Todd, R. S.; Whittaker, M.
Bioorg. Med. Chem. Lett. 2001, 11, 2585.
In conclusion, a series of BB-3497 analogues with alter-
native metal binding groups have been synthesised. The
nature of the metal chelating group was found to be
critical for PDF inhibitory activity and the optimum
groups on the pseudopeptidic backbone of BB-3497
were the N-formyl hydroxylamine and the hydroxamic
acid. These two compounds also demonstrated the best
8. Grehn, L.; Almeida, M. L. S.; Ragnarsson, U. Synthesis
1988, 992.
9. Katritzky, A. R.; Chang, H.-K.; Yang, B. Synthesis 1995,
503.
10. (a) The succinate portion of compound 5 was prepared by
employing an asymmetric alkylation on an Evans N-hexanoyl
oxazolidinone with t-butyl bromoacetate. See: (a) Beckett,
R. P.; Crimmin, M. J.; Davis, M. H.; Spavold, Z. Synlett 1993,
137. (b) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am.
Chem. Soc. 1982, 104, 1737.
11. Compound 8 was prepared from 2-bromohexanoyl bro-
mide and H-t-Leu-NMe2.
12. Szardenings, A. K.; Gordeev, M. F.; Patel, D. V. Tetra-
hedron Lett. 1996, 37, 3635.
Figure 3. Binding mode of BB-3497 to the active site of E. coli PDF
from X-ray data and predicted binding of hydroxamic acid 6.