Communications
Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
Redox-Switchable Lithium Trap
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B.
Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J.
V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W.
Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
[1.1]Diborataferrocenophane: A Highly Efficient
Li+ Scavenger**
Matthias Scheibitz, Rainer F. Winter, Michael Bolte,
Hans-Wolfram Lerner, and Matthias Wagner*
In various cases, electrophilic substitution reactions of
ferrocene are known to proceed via precomplexation of the
iron atom by the electrophile.[1] Moreover, direct iron-to-
metal bonding appears to influence the complexation behav-
ior of certain ferrocene-based redox-switchable cryptands,[2]
as well as the properties of catalytically active 2-metalla[3]-
ferrocenophanes (metal = TiIV, PdII, PtII).[3] The interaction of
ferrocene with Li+ was studied theoretically by Ugalde
et al.,[4] who located two minima on the energy surface. In
the lower energy structure, the lithium cation is h5-coordi-
nated on top of one of the cyclopentadienyl rings (I;
Scheme 1). The second minimum structure II is 8 kcalmolꢀ1
higher in energy and has the Li+ ion bonded laterally to the
iron atom. We recently reported the synthesis and structural
characterization of a ferrocene/gallium(i) cation complex with
essentially the same structural motif as I.[5] Here we report on
the isolation of a ferrocene/lithium complex that provides
experimental evidence for the existence of structure II.
When a slurry of 1,1’-dilithioferrocene (1)[6] in hexane is
treated with a solution of 1,1’-bis(dimethylboryl)ferrocene (2)
in THF,[7] the cyclic dinuclear aggregate 32ꢀ is formed in good
yield (Scheme 1). X-ray quality crystals of [3-Li]Li([12]crown-
4)2 were grown by gas-phase diffusion of diethyl ether into a
solution of the crude material in THF after addition of
[12]crown-4.
[10]D. Wittenberg, H. A. McNince, H. Gilman, J. Am. Chem. Soc.
1958, 80, 5418 – 5422.
[11]For examples, see M. S. Newman, Effects in Organic Chemistry,
Wiley, New York, 1956; L. N. Ferguson, The Modern Structural
Theory of Organic Chemistry, Prentice-Hall, Englewood Cliffs,
NJ, 1963.
[12]a) M. Beller, Angew. Chem. 1995, 107, 1436 – 1437; Angew.
Chem. Int. Ed. Engl. 1995, 34, 1316; b) J. F. Hartwig, Synlett 1997,
329; c) J. F. Hartwig, Angew. Chem. 1998, 110, 2154 – 2177;
Angew. Chem. Int. Ed. 1998, 37, 2046 – 2067; d) J. P. Wolfe, S.
Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc. Chem. Res. 1998, 31,
805; e) J. F. Hartwig, Acc. Chem. Res. 1998, 31, 852.
1
[13]Physical data for 1: White solid; H NMR (400 MHz, CDCl3):
d = 7.30 (d, 4H), 7.17 (d, 4H), 6.90 (d, 4H), 6.75 (dd, 4H), 6.47
(d, 4H), 3.94 (s, 6H), 3.64 ppm (s, 12H); 13C NMR (75 MHz,
CDCl3): d = 158.9, 152.5, 145.2, 136.83, 132.30, 119.5, 118.0,
117.3, 116.8, 116.1, 55.5 ppm; 13C NMR (75 MHz, C6D6): d =
159.4, 153.7, 146.0, 137.5, 132.8, 119.3, 119.0, 118.7, 117.6, 116.4,
55.0, 54.9 ppm; elemental analysis (%): calcd for C42H38N2O6Si:
C 72.60, H 5.51, N 4.03; found: C 72.41, H 5.44, N 3.97.
+
[14]The oxidation potential of trianisylamine was 0.16 V vs Fc/Fc
under the same conditions. This discrepancy of the first oxidation
potential between 1 and trianisylamine probably results from a
difference in conformation of the trianisylamine moieties. In 1,
the propellerlike conformation can be hardly adopted because of
its spiro structure.
[15]Compound 1 (69 mg, 0.1 mmol) was dissolved in dry dichloro-
methane and stirred at ꢀ788C under argon. SbCl5 (0.5 ml, 1m in
CH2Cl2) was added to the solution. After 10 min, the resulting
blue solution was poured into dry diethyl ether. The precipitate
was washed with dry diethyl ether to provide 1(SbCl6)2 (110 mg,
81%) as a greenish blue solid. 1(SbCl6)2: elemental analysis (%):
calcd for C42H38Cl12N2O6Sb2Si: C 36.99, H 2.81, N 2.05, Cl 31.19;
found: C 36.99, H 2.71, N 2.05, Cl 29.61.
The 11B NMR spectrum of [3-Li]Li([12]crown-4)2 reveals
one signal at d(11B, [D8]THF) = ꢀ21.8 ppm, which testifies to
[*] Prof. Dr. M. Wagner, Dipl.-Chem. M. Scheibitz, Dr. H.-W. Lerner
Institut für Anorganische Chemie
[16]The isolated solid sample was dissolved in CH 2Cl2, and the ESR
signal intensity was compared to that of a sample oxidized in situ
at the same concentration. The two signals gave the same fine
structure with almost the same intensity.
Johann Wolfgang Goethe-Universität Frankfurt
Marie-Curie-Strasse 11, 60439 Frankfurt/Main (Germany)
Fax: (+49)69-798-29260
E-mail: matthias.wagner@chemie.uni-frankfurt.de
[17]Example of oxidation with SbCl in CH2Cl2: H. Bock, A.
5
Dr. R. F. Winter
Rauschenbach, K. Ruppert, Z. Havlas, Angew. Chem. 1991, 103,
706 – 708; Angew. Chem. Int. Ed. 1998, 37, 714 – 716.
[18]N. Hirota, J. Am. Chem. Soc. 1967, 89, 32 – 41.
[19]K. Mukai, A. Sogabe, J. Chem. Phys. 1980, 72, 598 – 601.
[20]B. Bleaney, K. D. Bowers, Proc. R. Soc. London Ser. A 1952, 214,
451 – 456.
Institut für Anorganische Chemie
Universität Stuttgart
Pfaffenwaldring 55, 70569 Stuttgart (Germany)
Dr. M. Bolte+
Institut für Organische Chemie
Johann Wolfgang Goethe-Universität Frankfurt
Marie-Curie-Strasse 11, 60439 Frankfurt/Main (Germany)
[+] X-ray crystallography
[**] We wish to thank Prof. Dr. M. U. Schmidt (Universität Frankfurt) for
helpful discussions. M.W. is grateful to the Deutsche Forschungs-
gemeinschaft (DFG) for financial support. M.S. wishes to thank the
Fonds der Chemischen Industrie (FCI) and the Bundesministerium
für Bildung und Forschung (BMBF) for a PhD grant. R.W.
acknowledges support by the Stiftung Volkswagenwerk.
Supporting information for this article is available on the WWW
924
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1433-7851/03/4208-0924 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2003, 42, No. 8