472
LETTERS
SYNLETT
Soc., Perkin Trans. 1 1979, 1159. (c) Cekovic, Z.; Ilijev, D. Tetrahedron
Lett. 1988, 29, 1441.
of an equimolar amount of N-alkoxyphthalimide 8 and alkyl bromide 9a
with Bu SnH/AIBN afforded alcohol 10 (9%) and reduction product 11
3
(88%) (eq 4), indicating that 8 was much less reactive than bromide 9a.
However, 8 was more reactive than phenylselenide 9b. Table 1
summarizes experimental results and shows the clean generation of
(3) (a) Barton, D. H. R.; Beaton, J. M.; Geller. L. E.; Pechet, M. M. J. Am.
Chem. Soc. 1960, 82, 2640. (b) Akhtan, M. Adv. Photochem. 1964, 2,
263.
alkoxy radicals from the corresponding N-alkoxyphthalimides under the
(4) Vite, G. D.; Fraser-Reid, B. Synth. Commun. 1988, 18, 1339.
17
standard conditions (Bu SnH/ AIBN). The reaction was complete
3
(5) (a) Kraus, G. A.; Thurston, J. Tetrahedron Lett. 1987, 28, 4011. (b)
Furuta, K.; Nagata, T.; Yamamoto, H. Tetrahedron Lett. 1988, 29, 2215.
(c) Suginome, H.; Wang, J. J. Chem. Soc., Perkin Trans. 1 1990, 2825.
(d) Inanaga, J.; Sugimoto, Y.; Yokoyama, Y.; Hanamoto, T.
Tetrahedron Lett. 1992, 33, 8109
within 2 h in refluxing benzene and the yields were consistently high.
Radical cyclization of an alkoxy radical onto the double bond was
successfully carried out with 12 to afford 2-benzyltetrahydrofuran (13)
18
in 93% yield (eq 5). We also found that tris(trimethylsilyl)silane was
equally effective for the generation of alkoxy radicals from N-
alkoxyphthalimides (eq 6).
(6) Beckwith, A. L. J.; Hay, B. P; Willams, G. M. J. Chem. Soc., Chem.
Commun. 1989, 1202.
(7) (a) Pasto, D. J.; L'Hermine, G. J. Org. Chem. 1990, 55, 5815. (b) Pasto,
D. J.; Cottard, F. Tetrahedron Lett. 1994, 35, 4303.
(8) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1988, 110, 4415.
(9) Hay, B. P.; Beckwith, A. L. J. J. Org. Chem. 1989, 54, 4330.
(10) Hartung, J. Synlett 1996, 1206.
(11) Kim, S.; Lee, T. A. Synlett 1997, 950.
(12) Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110, 8736.
(13) Barton, D. H. R.; Blundell, P.; Jaszberenyi, J. C. Tetrahedron Lett. 1989,
30, 2341.
(14) Method A: To a solution of N-hydroxyphthalimide (200 mg, 1.2 mmol)
and sodium hydride (64 mg, 1.6 mmol) in DMF (4 ml) was added 5-
bromovaleronitrile (195 µl, 1.6 mmol) at 25 oC under N2. After being
stirred for 16 h at room temperature, the reaction mixture was diluted
with water and extracted with ether. The organic layer was dried over
anhydrous MgSO4, filtered and concentrated. The product was purified
by passing through a column of silica gel using an eluent (2:1, n-hexane-
ethyl acetate) to give N-alkoxy phthalimide 3 (RO=NC(CH2)4O, 242
mg, 81 %). 1H-NMR (200 MHz, CDCl3) δ 1.86-1.93 (m, 4H), 2.49 (t,
J=6.9 Hz, 2H), 4.20 (t, J=5.6 Hz, 2H), 7.69-7.81 (m, 4H); 13C-NMR (75
MHz, CDCl3) δ 16.6, 21.8, 26.8, 76.9, 119.4, 123.4, 128.6, 134.5, 163.4;
IR (KBr) 3098, 2952, 2239, 1789, 1727, 1462, 1130, 700 cm-1.
(15) Method B: To a solution of N-hydroxyphthalimide (40 mg, 0.26 mmol),
benzyl alcohol (38 µl, 0.38 mmol) and triphenyl-phosphine (74 mg, 0.28
mmol) in THF (1.5 ml) was added diethyl azodicarboxylate (45 µl, 0.28
mmol) in THF (0.6 ml) at 25 oC under N2. After being stirred for 18 h at
room temperature, the reaction mixture was diluted with water and
extracted with ether. The organic layer was dried over anhydrous
MgSO4, filtered and concentrated. The product was purified by passing
through a column of silica gel using an eluent (2:1, n-hexane-ethyl
acetate) to give N-alkoxyphthalimide 3 (RO=PhCH2O, 58 mg, 92 %).
1H-NMR (200 MHz, CDCl3) δ 5.19 (s, 2H), 7.34-7.77 (m, 9H); 13C-
NMR (75 MHz, CDCl3) δ 79.8, 123.4, 128.5, 128.8, 129.3, 129.8,
133.6, 134.3, 163.4; IR (KBr) 3076, 2954, 1789, 1730, 1382, 1131, 976,
698 cm-1.
(16) Mitsunobu, O. Synthesis 1981, 1.
(17) General procedure for the generation of alkoxy radicals from N-
Acknowledgement. We thank the Organic Chemistry Research Center
(KOSEF) for financial support.
alkoxyphthalimides 3. To
a solution of N-alkoxyphthalimide 3
(RO=PhCH2O, 60 mg, 0.24 mmol) and AIBN (6 mg) in benzene (4.8
ml, 0.05 M) was added Bu3SnH (72 µl, 0.26 mmol). The reaction
mixture was degassed for 20 min with nitrogen. After being refluxed in
refluxing benzene for 2 h, the reaction mixture was concentrated and
purified by silica gel column chromatography to give benzyl alcohol
(24.6 mg, 95 %).
References
(1) (a) Beckwith, A. L. J.; Ingold, K. U. In Rearrangements in Ground and
Exited States; de Mayo, P., Ed.; Academic: New York, 1980. (b) Kochi,
J. In Free Radicals; Kochi, J., Ed.; Wiley: New York, 1973; Vol. 2,
Chapter 24. (c) Suginome, H.; Yamada, S. Tetrahedron Lett. 1987, 28,
3963. (d) Suginome, H.; Liu, C. F.; Seko, S.; Kobayashi, K.; Furusaki,
A. J. Org. Chem. 1988, 53, 5852.(e) Kim, S.; Kim, K. H.; Cho, J. R.
Tetrahedron Lett. 1997, 38, 3915.
(18) (a) Chatgilialoglu, C.; Griller, D.; Lesage, M. J. Org. Chem. 1988, 53,
3641. (b) Giese, B.; Kopping, B.; Chatgilialoglu, C. Tetrahedron Lett.
1989, 30, 681. (c) Chatgilialoglu, C.; Giese, B.; Kopping, B.
Tetrahedron Lett. 1990, 31, 6013. (d) Kuliche, K. J.; Giese, B. Synlett
1990, 91. (e) Chatgilialoglu, C.; Dickhaut, J.; Giese, B. J. Org. Chem.
1991, 56, 6399.
(2) (a) Cekovic, Z.; Green, M. M. J. Am. Chem. Soc. 1974, 96, 3000. (b)
Barton, D. H. R.; Hesse, R. H.; Pechet, M. M.; Smith, L. C. J. Chem.