Organic Letters
Letter
(11) For impressive work of Kudo, see: Akagawa, K.; Kudo, K. Acc.
Chem. Res. 2017, 50, 2429 and references therein .
Author Contributions
(12) For selected reviews on amino acid based bifunctional phosphine
catalysis, see: (a) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Acc.
Chem. Res. 2016, 49, 1369. (b) Ni, H.; Chan, W.-L.; Lu, Y. Chem. Rev.
2018, 118, 9344. For selected examples, see: (c) Wang, T.; Yu, Z.;
Hoon, D. L.; Phee, C. Y.; Lan, Y.; Lu, Y. J. Am. Chem. Soc. 2016, 138,
265. (d) Wang, T.; Yu, Z.; Hoon, D. L.; Huang, K.-W.; Lan, Y.; Lu, Y.
Chem. Sci. 2015, 6, 4912. (e) Wang, T.; Yao, W.; Zhong, F.; Pang, G. H.;
Lu, Y. Angew. Chem., Int. Ed. 2014, 53, 2964. (f) Wang, T.; Hoon, D. L.;
Lu, Y. Chem. Commun. 2015, 51, 10186.
#J.-P.T. and P.Y. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
T.W. particularly thanks Prof. Yixin Lu (National University of
Singapore) for valuable help and suggestions. Financial support
was provided by the National Natural Science Foundation of
China (21702139), the “1000-Youth Talents Program”
(YJ201702), and the Fundamental Research Funds for the
Central Universities. We also acknowledge the comprehensive
training platform of the Specialized Laboratory in the College of
Chemistry at Sichuan University and the Analytical & Testing
Center of Sichuan University for compound testing.
(13) For recent reviews, see: (a) Werner, T. Adv. Synth. Catal. 2009,
351, 1469. (b) Liu, S.; Kumatabara, Y.; Shirakawa, S. Green Chem. 2016,
18, 331. (c) Golandaj, A.; Ahmad, A.; Ramjugernath, D. Adv. Synth.
̀
Catal. 2017, 359, 3676. (d) Selva, M.; Noe, M.; Perosa, A.; Gottardo,
M. Org. Biomol. Chem. 2012, 10, 6569.
(14) For the pioneering work on phosphonium salt catalysis by
Maruoka, see: (a) He, R.; Wang, X.; Hashimoto, T.; Maruoka, K.
Angew. Chem., Int. Ed. 2008, 47, 9466. (b) He, R.; Ding, C.; Maruoka, K.
Angew. Chem., Int. Ed. 2009, 48, 4559. (c) He, R.; Maruoka, K. Synthesis
2009, 2009, 2289. (d) Shirakawa, S.; Kasai, A.; Tokuda, T.; Maruoka, K.
Chem. Sci. 2013, 4, 2248. (e) Shirakawa, S.; Koga, K.; Tokuda, T.;
Yamamoto, K.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 6220.
(15) For the pioneering work on phosphonium salt catalysis by Ooi,
see: (a) Uraguchi, D.; Sakaki, S.; Ooi, T. J. Am. Chem. Soc. 2007, 129,
12392. (b) Uraguchi, D.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2008, 130,
14088. (c) Uraguchi, D.; Nakashima, D.; Ooi, T. J. Am. Chem. Soc.
2009, 131, 7242. (d) Uraguchi, D.; Ito, T.; Ooi, T. J. Am. Chem. Soc.
2009, 131, 3836. (e) Uraguchi, D.; Asai, Y.; Ooi, T. Angew. Chem., Int.
Ed. 2009, 48, 733. (f) Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J.
Am. Chem. Soc. 2015, 137, 13768.
(16) For selected examples on bifunctional phosphonium salt-
catalyzed asymmetric reactions by Zhao, see: (a) Cao, D.; Zhang, J.;
Wang, H.; Zhao, G. Chem. - Eur. J. 2015, 21, 9998. (b) Cao, D.; Chai, Z.;
Zhang, J.; Ye, Z.; Xiao, H.; Wang, H.; Chen, J.; Wu, X.; Zhao, G. Chem.
Commun. 2013, 49, 5972. (c) Wu, X.; Liu, Q.; Liu, Y.; Wang, Q.; Zhang,
Y.; Chen, J.; Cao, W.; Zhao, G. Adv. Synth. Catal. 2013, 355, 2701.
(d) Ge, L.; Lu, X.; Cheng, C.; Chen, J.; Cao, W.; Wu, X.; Zhao, G. J. Org.
Chem. 2016, 81, 9315. (e) Cao, D.; Fang, G.; Zhang, J.; Wang, H.;
Zheng, C.; Zhao, G. J. Org. Chem. 2016, 81, 9973. (f) Wang, H.; Wang,
K.; Ren, Y.; Li, N.; Tang, B.; Zhao, G. Adv. Synth. Catal. 2017, 359,
1819. (g) Xia, X.; Zhu, Q.; Wang, J.; Chen, J.; Cao, W.; Zhu, B.; Wu, X.
J. Org. Chem. 2018, 83, 14617. (h) Fang, G.; Zheng, C.; Cao, D.; Pan, L.;
Hong, H.; Wang, H.; Zhao, G. Tetrahedron 2019, 75, 2706. (i) Zhang,
J.; Zhao, G. Tetrahedron 2019, 75, 1697. (j) Pan, L.; Zheng, C.-W.;
Fang, G.-S.; Hong, H.-R.; Liu, J.; Yu, L.-H.; Zhao, G. Chem. - Eur. J.
2019, 25, 6306.
REFERENCES
■
(1) (a) Shi, G. Q.; Dropinski, J. F.; Zhang, Y.; Santini, C.; Sahoo, S. P.;
Berger, J. P.; MacNaul, K. L.; Zhou, G.; Agrawal, A.; Alvaro, R.; Cai, T.-
q.; Hernandez, M.; Wright, S. D.; Moller, D. E.; Heck, J. V.; Meinke, P.
T. J. Med. Chem. 2005, 48, 5589. (b) Nevagi, R. J.; Dighe, S. N.; Dighe,
S. N. Eur. J. Med. Chem. 2015, 97, 561. (c) Radadiya, A.; Shah, A. Eur. J.
Med. Chem. 2015, 97, 356.
(2) For selected reviews, see: (a) Zhu, C.; Ding, Y.; Ye, L.-W. Org.
Biomol. Chem. 2015, 13, 2530. (b) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.;
Xiao, W.-J. Chem. Rev. 2015, 115, 5301. (c) Sheppard, T. D. J. Chem.
Res. 2011, 35, 377. For selected examples, see: (d) Trost, B. M.; Thiel,
O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155. (e) Coy B, E. D.;
Jovanovic, L.; Sefkow, M. Org. Lett. 2010, 12, 1976. (f) Meng, J.; Jiang,
T.; Bhatti, H. A.; Siddiqui, B. S.; Dixon, S.; Kilburn, J. D. Org. Biomol.
Chem. 2010, 8, 107. (g) Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011,
133, 5767. (h) Sun, X.-X.; Zhang, H.-H.; Li, G.-H.; Meng, L.; Shi, F.
Chem. Commun. 2016, 52, 2968.
(3) For one selected review on o-QMs, see: (a) Wang, Z.; Sun, J.
Synthesis 2015, 47, 3629. For selected examples on [4 + 1] reaction of
o-QMs, see: (b) Chen, M.-W.; Cao, L.-L.; Ye, Z.-S.; Jiang, G.-F.; Zhou,
Y.-G. Chem. Commun. 2013, 49, 1660. (c) Wu, B.; Chen, M.-W.; Ye, Z.-
S.; Yu, C.-B.; Zhou, Y.-G. Adv. Synth. Catal. 2014, 356, 383.
(d) Meisinger, N.; Roiser, L.; Monkowius, U.; Himmelsbach, M.;
Robiette, R.; Waser, M. Chem. - Eur. J. 2017, 23, 5137. (e) Yang, Q.-Q.;
Xiao, W.-J. Eur. J. Org. Chem. 2017, 2017, 233.
(4) For one selected review on p-QMs, see: Li, W.; Xu, X.; Zhang, P.;
Li, P. Chem. - Asian J. 2018, 13, 2350.
(17) (a) Pan, J.; Wu, J.-H.; Zhang, H.; Ren, X.; Tan, J.-P.; Zhu, L.;
Zhang, H.-S.; Jiang, C.; Wang, T. Angew. Chem., Int. Ed. 2019, 58, 7425.
(b) Wen, S.; Li, X.; Lu, Y. Asian J. Org. Chem. 2016, 5, 1457.
(18) (a) Kim, S.-K.; Park, Y.-C.; Lee, H. H.; Jeon, S. T.; Min, W.-K.;
Seo, J.-H. Biotechnol. Bioeng. 2015, 112, 346. (b) Svedendahl, M.; Hult,
K.; Berglund, P. J. Am. Chem. Soc. 2005, 127, 17988.
(5) (a) Zhi, Y.; Zhao, K.; Essen, C.; Rissanen, K.; Enders, D. Org.
Chem. Front. 2018, 5, 1348. For other impressive examples on
hydroxyl-substituted p-QMs by Enders, see: (b) Zhao, K.; Zhi, Y.; Shu,
T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016,
55, 12104. (c) Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. ACS Catal. 2016,
6, 657. (d) Liu, Q.; Li, S.; Chen, X.-Y.; Rissanen, K.; Enders, D. Org.
Lett. 2018, 20, 3622.
(6) Chen, X.-M.; Xie, K.-X.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan,
W.-C. Tetrahedron 2018, 74, 600.
(7) Liu, L.; Yuan, Z.; Pan, R.; Zeng, Y.; Lin, A.; Yao, H.; Huang, Y. Org.
Chem. Front. 2018, 5, 623.
(8) For other examples, see: (a) Zhou, J.; Liang, G.; Hu, X.; Zhou, L.;
Zhou, H. Tetrahedron 2018, 74, 1492. (b) Xiong, Y.-J.; Shi, S.-Q.; Hao,
W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2018, 5, 3483.
(9) For selected reviews by Miller, see: (a) Miller, S. J. Acc. Chem. Res.
2004, 37, 601. (b) Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S.
Chem. Rev. 2007, 107, 5759. (c) Toste, F. D.; Sigman, M. S.; Miller, S. J.
Acc. Chem. Res. 2017, 50, 609. (d) Shugrue, C. R.; Miller, S. J. Chem. Rev.
2017, 117, 11894. (e) Metrano, A. J.; Miller, S. J. Acc. Chem. Res. 2019,
52, 199.
(20) During our preparation of this manuscript, a single isolated
example of a phosphine-catalyzed [4 + 1] cyclization of ortho-
hydroxypara-quinone methides with allenoates was reported, which
proceeded with moderate yields (59−89%) and enantioselectivities
́
̌
̌
(0−88% ee); see: Zielke, K.; Kovac, O.; Winter, M.; Pospísil, J.; Waser,
M. Chem. - Eur. J. 2019, 25, 8163.
(10) For impressive work of Wennemers, see: Wennemers, H. Chem.
Commun. 2011, 47, 12036. and references therein.
E
Org. Lett. XXXX, XXX, XXX−XXX