4504
J . Org. Chem. 1997, 62, 4504-4506
ylamine for the selective ortho-bromination of phenols.17
A New Br om in a tion Meth od for P h en ols
Benzene reacts with NBS only in the presence of sto-
ichiometric amounts of Lewis acids or concd H2SO4.18
Other acidic catalysts that were used with NBS for the
bromination of activated aromatic substrates are aqueous
a n d An isoles: NBS/HBF 4‚Et2O in CH3CN
Thomas Oberhauser
H2SO4 or catalytic amounts of concd H2SO4,20 TsOH,21
F. Hoffmann-La Roche Ltd, Pharmaceuticals Division,
Chemical Process Research, CH-4070 Basel, Switzerland
19
silica gel,22 and the zeolite HZSM-5.23
Herein we report a new method for the selective
monobromination of phenols and anisoles with NBS in
CH3CN promoted by HBF4‚Et2O or other strong acids.24
The results are summarized in Table 1. In the course of
process research directed towards a technical synthesis
of the potassium channel opener Ro 31-6930,25 we
required 2-bromo-4-hydroxybenzonitrile. Bromination of
4-hydroxybenzonitrile with NBS in CH3CN gave a mix-
ture of starting material, the desired ortho-monobromi-
nated phenol, and the corresponding dibromo compound
(entry 1f). With stoichiometric H2SO4, selective mono-
bromination was observed, but even after 24 h the
reaction was not complete (entry 1e). CF3SO3H, FSO3H,
and HBF4‚Et2O on the other hand resulted in selective
monobrominations within 3-24 h (entries 1a,b,d) whereas
ClSO3H gave about 9% dibromophenol (entry 1c). Even
when 4-hydroxybenzonitrile was treated with 2 equiv of
NBS and 2 equiv of HBF4‚Et2O, only 6% dibromophenol
was detected. This nicely demonstrates the high selec-
tivity of this reagent. For all subsequent bromination
experiments HBF4‚Et2O was used. The bromination is
highly para-selective for phenol itself (entry 7a) as well
as for ortho- and meta-substituted phenols (entries 2a,
3a, 5a, 6a, 9a). Para-substituted phenols were bromi-
nated in the ortho-position (entries 4a, 8a). The yields
were generally good to excellent. 4-Nitrophenol and
2-nitroanisole required FSO3H for complete bromination
(entries 10a, 12a). HBF4‚Et2O led only to incomplete
conversion (entries 10b, 12b). In the absence of acid,
mixtures of compounds were obtained, often with the
dibrominated compound dominating (entries 2-9b, 10c).
The only exceptions were 2-methylphenol and 2-meth-
oxyphenol (entries 13, 14). With these substrates, selec-
tive monobromination was achieved with and without
acid. 2-Nitroanisole and 4-methoxybenzoic acid methyl
ester were virtually inert toward NBS in the absence of
acid (entries 12c, 11b).
Received December 10, 1996
For the bromination of phenols, bromine in haloge-
nated hydrocarbons1 or HOAc2 is often the reagent of
choice. However, with many substrates, mixtures of
mono- and polybrominated compounds are obtained.3 For
the selective monobromination of phenols and other
activated aromatics, milder and also less hazardous
reagents like dioxane dibromide,4 pyridinium hydrobro-
mide perbromide,5 DBU hydrobromide perbromide,6 tet-
rabromocyclohexadienone,7 tetraalkylammonium tribro-
mides,8 and hexamethylenetetramine tribromide9 have
been developed. These reagents yield selectively para-
brominated phenols unless the para-position is substi-
tuted. A reagent which brominates phenol selectively in
the ortho-position is Br2/t-BuNH2.10
Another popular and inexpensive reagent for aromatic
brominations is N-bromosuccinimide (NBS) in CCl4.11
Alkylated aromatics are either brominated in the side
chain with NBS and benzoyl peroxide (Wohl-Ziegler
reaction) or in the aromatic nucleus when no radical
initiator is present.12 The nuclear bromination of acti-
vated aromatic compounds (alkylbenzenes, phenols, ani-
soles) with NBS is clearly favored by polar solvents like
propylene carbonate,13 DMF,14 and CH3CN.15 NBS has
also been used in aqueous NaOH for the bromination of
methoxy benzoic acids16 and in the presence of diisoprop-
(1) (a) Torii, S.; Tanaka, H.; Siroi, T.; Akada, M. J . Org. Chem. 1979,
44, 3305-3310. (b) Weller, D. D.; Stirchak, E. P. Yokoyama, A. J . Org.
Chem. 1984, 49, 2061-2063. (c) Kelly, S. M.; Schadt, H. Helv. Chim.
Acta 1985, 68, 813-818. (d) Do¨tz, K. H.; Popall, M. Chem. Ber. 1988,
121, 665-672.
(2) Coburn, C. E.; Anderson, D. K.; Swenton, J . S. J . Org. Chem.
1983, 48, 1455-1461.
(3) (a) Berg, S. S.; Newbery, G. J . Chem. Soc. 1949, 642-648. (b)
Rosenmund, K. W.; Pfroepffer, K. Chem. Ber. 1957, 90, 1922-1928.
(c) B. Miller, H. Margolies (American Cyanamide Co.), US Pat. 3,636,-
205, 1972.
(4) Yanovskaya, L. A.; Terentyev, A. P.; Belenky, L. I. J . Gen. Chem.
USSR (Engl. Transl.) 1952, 22, 1635-1638.
(5) Rosenmund, K. W.; Kuhnhenn, W. Ber. Dtsch. Chem. Ges. 1923,
56, 1262-1269.
NBS and HBF4‚Et2O in CH3CN is not suited for the
bromination of hydroxybenzaldehyde or hydroxyacetophe-
none. Both compounds decomposed and in case of the
(6) Muathen, H. A. J . Org. Chem. 1992, 57, 2740-2741.
(7) Cram, D. J .; Dicker, I. B.; Lauer, M.; Knobler, C. B.; Trueblood,
K. N. J . Am. Chem. Soc. 1984, 106, 7150-7167.
(8) (a) Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Nakamura, H.;
Fujikawa, M. Bull. Chem. Soc. J pn. 1987, 60, 4187-4189. (b) Berthelot,
J .; Guette, C.; Desbe`ne, P.-L.; Basselier, J .-J . Can. J . Chem. 1989, 67,
2061-2066.
(9) Bisarya, S. C.; Rao, R. Synth. Commun. 1993, 23, 779-788.
(10) (a) Pearson, D. E.; Wysong, R. D.; Breder, C. V. J . Org. Chem.
1967, 32, 2358-2360. (b) Deck, L. M.; Brazwell, E. M.; Van der J agt,
D. L.; Royer, R. E. Org. Prep. Proced. Int. 1990, 22, 495-500.
(11) (a) Buu-Ho¨ı, N. P. J ustus Liebigs Ann. Chem. 1944, 556, 1-9.
(b) Roberts, J . C.; Roffey, P. J . Chem. Soc. (C) 1966, 160-163.
(12) (a) Djerassi, C. Chem. Rev. 1948, 43, 271-317. (b) Goldberg,
Y.; Bensimon, C.; Alper, H. J . Org. Chem. 1992, 57, 6374-6376.
(13) Ross, S. D.; Finkelstein, M.; Petersen, R. C. J . Am. Chem. Soc.
1958, 80, 4327-4330.
(14) (a) Mitchell, R. H.; Lai, Y.-H.; Williams, R. V. J . Org. Chem.
1979, 44, 4733-4735. (b) Weller, D. D.; Stirchak, E. P. J . Org. Chem.
1983, 48, 4873-4879. (c) Dijkstra, P. J .; den Hertog, H. J .; van Eerden,
J .; Harkema, S.; Reinhoudt, D. N. J . Org. Chem. 1988, 53, 374-382.
(d) Gnaim, J . M.; Keehn, P. M.; Green, B. S. Tetrahedron Lett. 1992,
33, 2883-2886.
(17) Fujisaki, S.; Eguchi, H.; Omura, A.; Okamoto, A.; Nishida, A.
Bull. Chem. Soc. J pn. 1993, 66, 1576-1579.
(18) Schmid, H. Helv. Chim. Acta 1946, 29, 1144-1151.
(19) Lambert, F. L.; Ellis, W. D.; Parry, R. J . J . Org. Chem. 1965,
30, 304-306.
(20) (a) Coleman, R. S.; Grant, E. B. J . Org. Chem. 1991, 56, 1357-
1359. (b) Diwu, Z. J .; Lown, J . W. Tetrahedron 1992, 48, 45-54.
(21) Bovonsombat, P.; McNelis, E. Synthesis 1993, 237-241.
(22) Konishi, H.; Aritomi, K.; Okano, T.; Kiji, J . Bull. Chem. Soc.
J pn. 1989, 62, 591-593.
(23) Paul, V.; Sudalai, A.; Daniel, T.; Srinivasan, K. V. Tetrahedron
Lett. 1994, 35, 7055-7056.
(24) Bromination of phenols with Br2/CF3COOH: Fischer, A.; Hend-
erson, G. N. Can. J . Chem. 1983, 61, 1045-1052. Bromination of
phenols with Br2/SbF5-HF: (a) J acquesy, J .-C.; J ouannetaud, M.-P.;
Makani, S. J . Chem. Soc., Chem. Commun. 1980, 110-111. (b)
J acquesy, J .-C.; J ouannetaud, M.-P. Tetrahedron 1981, 37, 747-751.
(c) J acquesy, J .-C.; J ouannetaud, M.-P. Tetrahedron Lett. 1982, 1673-
1676. Iodination of deactivated aromatics with N-iodosuccinimide in
CF3SO3H: Olah, G. A.; Wang, Q.; Sandford, G.; Prakash, G. K. S. J .
Org. Chem. 1993, 58, 3194-3195.
(15) Carren˜o, M. C.; Garc´ıa Ruano, J . L.; Sanz, G.; Toledo, M. A.;
Urbano, A. J . Org. Chem. 1995, 60, 5328-5331.
(16) Auerbach, J .; Weissman, S. A.; Blacklock, T. J .; Angeles, M.
R.; Hoogsteen, K. Tetrahedron Lett. 1993, 34, 931-934.
(25) Attwood, M. R.; Churcher, I.; Dunsdon, R. M.; Hurst, D. N.;
J ones, P. S. Tetrahedron Lett. 1991, 32, 811-814.
S0022-3263(96)02299-2 CCC: $14.00 © 1997 American Chemical Society