C O M M U N I C A T I O N S
Scheme 3
synthesis of (9S)-dihydroerythronolide A has been accomplished
with the longest linear sequence of 29 steps and in 5.4% overall
yield.
Acknowledgment. This research was supported by a CAREER
Award from the National Science Foundation (CHE-9701622).
K.A.W. thanks the Camille and Henry Dreyfus Foundation, Johnson
& Johnson, and Merck Research Laboratories for awards to support
research. We thank Dr. John Greaves and Dr. John Mudd for mass
spectrometric data. We thank Professor Kazunobu Toshima (Keio
University, Japan) for providing a 1H NMR spectrum of (9S)-
dihydroerythronolide A for comparison.
Supporting Information Available: Full experimental and analyti-
cal data for all new compounds; the chiral HPLC traces of (()-13,
(-)-13, and (+)-13; and 1H and 13C NMR spectra of selected
compounds. This material is available free of charge via the Internet
References
(1) For leading references, see: (a) Masse, C. E.; Panek, J. S. Chem. ReV.
1995, 95, 1293-1316. (b) Kno¨lker, H.-J. J. Prakt. Chem. 1997, 339, 304-
314.
(2) (a) Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2001, 3, 675-678. (b) Peng,
Z.-H.; Woerpel, K. A. Org. Lett. 2002, 4, 2945-2948. (c) Roberson, C.
W.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 11342-11348. (d)
Micalizio, G. C.; Roush, W. R. Org. Lett. 2001, 3, 1949-1952.
(3) The related [2 + 2] annulation reaction has also been employed for the
synthesis of a four-membered ring-containing natural product: Kno¨lker,
H.-J.; Baum, G.; Schmitt, O.; Wanzl, G. Chem. Commun. 1999, 1737-
1738.
Scheme 4
(4) Panek, J. S.; Beresis, R. T. J. Am. Chem. Soc. 1993, 115, 7898-7899.
(5) For reviews on early synthetic work, see: (a) Paterson, I.; Mansuri, M.
M. Tetrahedron 1985, 41, 3569-3624. (b) Mulzer, J. Angew. Chem., Int.
Ed. Engl. 1991, 30, 1452-1454.
(6) For recent studies on the syntheses of erythromycins and erythronolides,
see: (a) Stu¨rmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem., Int.
Ed. Engl. 1993, 32, 101-103. (b) Martin, S. F.; Hida, T.; Kym, P. R.;
Loft, M.; Hodgson, A. J. Am. Chem. Soc. 1997, 119, 3193-3194. (c)
Evans, D. A.; Kim, A. S.; Metternich, R.; Novack, V. J. J. Am. Chem.
Soc. 1998, 120, 5921-5942.
(7) (a) Tamao, K. AdVances in Silicon Chemistry; JAI: Greenwich, CT, 1996;
Vol. 3, pp 1-62. (b) Fleming, I. Chemtracts: Org. Chem. 1996, 9,
1-64.
(8) Previous synthetic studies showed that the macrolactonization of the seco
acid was favored with the (9S)-configuration and cyclic protecting groups
at C3/C5 and C9/C11 diols; see: (a) Woodward, R. B. et al. J. Am. Chem.
Soc. 1981, 103, 3213-3215. (b) Stork, G.; Rychnovsky, S. D. J. Am.
Chem. Soc. 1987, 109, 1565-1567.
(9) (a) Heathcock, C. H.; Arseniyadis, S. Tetrahedron Lett. 1985, 26, 6009-
6012. (b) Solsona, J. G.; Romea, P.; Urp´ı, F.; Vilarrasa, J. Org. Lett. 2003,
5, 519-522. (c) Choudhury, A.; Thornton, E. R. Tetrahedron Lett. 1993,
34, 2221-2224.
(10) Lithium and titanium enolates gave poor selectivities for the model aldol
reaction. For the chelation-controlled aldol reaction of â-benzyloxy ethyl
ketone using tin-enolate, see: Paterson, I.; Tillyer, R. D. Tetrahedron Lett.
1992, 33, 4233-4236. The details of the model aldol reaction are provided
in Supporting Information.
of (R)-4-benzyl-3-propionyloxazolidin-2-one afforded the desired
aldol adduct as a single diastereomer.13,14 Protection of the hy-
droxyl group by an anhydrous DDQ oxidation yielded a 4-meth-
oxybenzylidene acetal, which could be converted to the C1-C8
fragment 8.
With the two fragments in hand, efforts were focused on the
key aldol coupling reaction. In accordance with the model system
(eq 1), the aldol reaction of 7 and 8 gave the desired product 17 as
a single diastereomer in 90% yield (Scheme 4). Although an excess
of the aldehyde 7 (4.0 equiv) was used to consume all the ketone
8, unreacted aldehyde was easily recovered without epimerization.
The C7 oxygen atom was removed by a directed reduction15 and
protection of the C9 hydroxyl group followed by deoxygenation.6c,16
Unmasking of the carboxylic acid and removal of the silyl group
provided the seco-acid 6. Macrolactonization17 followed by global
deprotection afforded (9S)-dihydroerythronolide A (1), whose
subsequent conversion into erythronolide A and erythromycin A
is known.18,19
(11) The tin(II)-mediated aldol reaction of 10 with achiral isobutyraldehyde
afforded the chelation-controlled and nonchelation-controlled aldol prod-
ucts in a ratio of about 12:1. The stereochemistry of 12 reflected an anti-
Felkin aldehyde diastereofacial selection, which was usually the matched
case in the double-stereodifferentiating aldol reactions of (Z)-enolates;
see: Roush, W. R. J. Org. Chem. 1991, 56, 4151-4157.
(12) Tamao, K. Nakajima, T.; Sumiya, R.; Arai, H.; Higuchi, N.; Ito, Y. J.
Am. Chem. Soc. 1986, 108, 6090-6093.
(13) Gage, J. R.; Evans, D. A. Organic Syntheses; Wiley: New York, 1993;
Collect. Vol. VIII, pp 339-349.
(14) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem.
2001, 66, 894-902.
(15) Oishi, T.; Nakata, T. Acc. Chem. Res. 1984, 17, 338-344.
(16) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975,
1574-1585.
(17) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989-1993.
(18) Nakata, M.; Arai, M.; Tomooka, K.; Ohsawa, N.; Kinoshita, M. Bull.
Chem. Soc. Jpn. 1989, 62, 2618-2635.
This work demonstrates that the [3 + 2] annulation of allylic
silanes can be a powerful method for the synthesis of highly sub-
stituted acyclic targets. Using this methodology, a convergent total
(19) Toshima, K.; Nozaki, Y.; Mukaiyama, S.; Tamai, T.; Nakata, M.; Tatsuta,
K.; Kinoshita, M. J. Am. Chem. Soc. 1995, 117, 3717-3727.
JA034865Z
9
J. AM. CHEM. SOC. VOL. 125, NO. 20, 2003 6019