10.1002/chem.201903443
Chemistry - A European Journal
COMMUNICATION
[7]
[8]
a) F. Iwasaki, T. Maki, O. Onomura, W. Nakashima, Y. Matsumura, J.
Org. Chem. 2000, 65, 996; b) Y. Demizu, Y. Kubo, H. Miyoshi, T. Maki,
Y. Matsumura, N. Moriyama, O. Onomura Org. Lett. 2008, 10, 5075.
a) W. Muramatsu, S. Tanigawa, Y. Takemoto, H. Yoshimatsu, O.
Onomura, Chem. Eur. J. 2012, 18, 4850; b) W. Muramatsu, J. Org. Chem.
2012, 77, 8083; c) W. Muramatsu, H. Yoshimatsu, Adv. Synth. Catal.
2013, 355, 2518; d) M. Giordano, A. Iadonisi, J. Org. Chem. 2014, 79,
213; e) H. Xu, Y. Lu, Y. Zhou, B. Ren, Y. Pei, H. Dong, Z. Pei, Adv. Synth.
Catal. 2014, 356, 1735; f) W. Muramatsu, Org. Lett. 2014, 16, 4846.
B. Ren, O. Ramstrꢀm, Q. Zhang, J. Ge, H. Dong, Chem. Eur. J. 2016,
22, 2481.
or L-fucose derivative 2i and D-xylose derivative 9b were
effectively promoted when using 1h (entries 4 and 5).
[9]
Scheme 2. Ns group as orthogonal protective group.
[10] a) B. Ren, J. Lv, Y. Zhang, J. Tian, H. Dong, ChemCatChem 2017, 9,
950; b) B. Ren, N. Yan, L. Gan, RSC Adv. 2017, 7, 46257.
Finally, deprotection of Ns group in 10 was examined
(Scheme 2). Use of PhSH and K2CO3 in MeCN gave deprotected
compound 11 in good yield, and side reactions (substitution,
elimination, or 1,2-acyl migration) were not observed in the mild
basic conditions.
[11] a) K. Ishihara, H. Yamamoto, Eur. J. Org. Chem. 1999, 527; b) K.
Ishihara in Lewis Acids in Organic Synthesis Vol. 1 (Eds.: H. Yamamoto,
Wiley-VCH, Weinheim, 2000, pp. 89−190); c) K. Ishihara, H. Yamamoto
in Modern Aldol Reactions (Eds.: R. Mahrwald, Wiley-VCH, Weinheim,
2004, pp. 25−68).
[12] D. Lee, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 3724.
[13] a) L. Chan, M. S. Taylor, Org. Lett. 2011, 13, 3090; b) C. Gouliaras, D.
Lee, L. Chan, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 13926; c) D.
Lee, C. L. Williamson, L. Chan, M. S. Taylor, J. Am. Chem. Soc. 2012,
134, 8260; d) E. Dimitrijevic, M. S. Taylor, Chem. Sci. 2013, 4, 3298; e)
S. O. Bajaj, E. U. Sharif, N. G. Akhmedov, G. A. O’Doherty, Chem. Sci.
2014, 5, 2230; f) K. A. D'Angelo, M. S. Taylor, J. Am. Chem. Soc. 2016,
138, 11058; g) S. Izumi, Y. Kobayashi, Y. Takemoto, Org. Lett. 2019, 21,
665.
In conclusion, we have developed a chiral benzazaborole-
catalyzed
regioselective
sulfonylation
of
unprotected
carbohydrate derivatives. This methodology enables direct
regioselective functionalization of the secondary OH groups in the
carbohydrate derivatives in the presence of the primary OH
groups. This organoboron catalysis could also be used for the
kinetic resolution of carbohydrate derivatives.
[14] For pioneering example using organoboron compounds, see: a) K.
Oshima, Y. Aoyama, J. Am. Chem. Soc. 1999, 121, 2315; b) R.-Z. Li, H.
Tang, L. Wan, X. Zhang, Z. Fu, J. Liu, S. Yang, D. Jia, D. Niu, Chem.
2017, 3, 834.
Acknowledgements
This work was financially supported by Toray Award in Synthetic
Organic Chemistry, Japan, and JSPS KAKENHI Grant Number
19K15553.
[15] Boronic acid-catalyzed glycosylation via SNi-type strategy, see: M.
Tanaka, A. Nakagawa, N. Nishi, K. Iijima, R. Sawa, D. Takahashi, K.
Toshima, J. Am. Chem. Soc. 2018, 140, 3644.
[16] Diarylborinic acid-catalyzed, site-selective sulfation of carbohydrate
derivatives was reported during the preparation of our manuscript
(Scheme1d). see: D. Gorelik, Y. C. Lin, A. I. Briceno-Strocchia, M. S.
Taylor, J. Org. Chem. 2019, 84, 900.
Keywords: chiral benzazaborole • organoboron catalyst •
regioselective sulfonylation
•
carbohydrate derivatives
•
cooperative catalysis
[17] a) X. Sun, H. Lee, S. Lee, K. L. Tan, Nat. Chem. 2013, 5, 790; b) C. L.
Allen, S. J. Miller, Org. Lett. 2013, 15, 6178; c) I.-H. Chen, K. G. M. Kou,
D. N. Le, C. M. Rathbun, V. M. Dong, Chem. Eur. J. 2014, 20, 5013.
[18] a) S. J. Danishefsky, M. P. DeNinno, S. Chen, J. Am. Chem. Soc. 1988,
110, 3929; b) Y. Tsuda, M. Nishimura, Y. Ito, Chem. Pharm. Bull. 1991,
39, 1983; c) S. R. Sanapala, S. S. Kulkarni, J. Am. Chem. Soc. 2016,
138, 4938.
[1]
[2]
For examples, see: a) T. Feizi, Nature 1985, 314, 53; b) H.-J. Gabius, S.
Gabius Lectins and Cancer (Springer-Verlag: New York, 1991.); c) P. R.
Crocker, T. Feizi, Curr. Opin. Struct. Biol. 1996, 6, 679; d) G. S. Kansas,
Blood 1996, 88, 3259; e) S. Liedtke, H. Geyer, M. Wuhrer, R. Geyer, G.
Frank, R. Gerardy-Schahn, U. Zahringer, M. Schachner, Glycobiology
2001, 11, 373; f) S. Brodesser, P. Sawatzki, T. Kolter, Eur. J. Org. Chem.
2003, 11, 2021.
[19] For chiral boronic acid catalyst, see; a) K. Arnold, B. Davies, D. Hꢁrault,
A. Whiting, Angew. Chem. Int. Ed. 2008, 47, 2673; b) D. Lee, S. G.
Newman, M. S. Taylor, Org. Lett. 2009, 11, 5486; c) T. Hashimoto, A. O.
Gꢂlvez, K. Maruoka, J. Am. Chem. Soc. 2015, 137, 16016; d) N. Hayama,
T. Azuma, Y. Kobayashi, Y. Takemoto, Chem. Pharm. Bull. 2016, 64,
704; e) N. Hayama, R. Kuramoto, T. Fꢀldes, K. Nishibayashi, Y.
Kobayashi, I. Pꢂpai, Y. Takemoto, J. Am. Chem. Soc. 2018, 140, 12216.
[20] a) S. Kuwano, Y. Hosaka, T. Arai, Org. Biomol. Chem. 2019, 17, 4475;
b) N. Mannville, H. Alite, F. Haeffner, A. H. Hoveyda, M. L. Snapper, Nat.
Chem., 2013, 5, 768.
a) D. Lee, M. S. Taylor, Synthesis 2012, 44, 3421; b) W. Muramatsu,
Trends Glycosci. Glycotechnol. 2016, 28, J1; c) Y. Ueda, T. Kawabata,
Top. Curr. Chem. 2015, 372, 203; d) M. W. Giuliano, S. J. Miller, Top.
Curr. Chem. 2015, 372, 157; e) C. R. Shugrue, S. J. Miller, Chem. Rev.
2017, 117, 11894; f) V. Dimakos, M. S. Taylor, Chem. Rev. 2018, 118,
11457.
[3]
[4]
K. S. Griswold, S. J. Miller, Tetrahedron 2003, 59, 8869.
T. Kawabata, W. Muramatsu, T. Nishio, T. Shibata, H. Schedel, J. Am.
Chem. Soc. 2007, 129, 12890.
[21] DATB catalyst having an azaborine ring, see; a) H. Noda, M. Furutachi,
Y. Asada, M. Shibasaki, N. Kumagai, Nat. Chem. 2017, 9, 571; b) H.
Noda, Y. Asada, M. Shibasaki, N. Kumagai, J. Am. Chem. Soc.
2019, 141, 1546.
[5]
a) Y. Ueda, W. Muramatsu, K. Mishiro, T. Furuta, T. Kawabata, J. Org.
Chem. 2009, 74, 8802; b) H. Takeuchi, K. Mishiro, Y. Ueda, Y. Fujimori,
T. Furuta, T. Kawabata, Angew. Chem., Int. Ed. 2015, 54, 6177; c) Y.
Ueda, T. Furuta, T. Kawabata, Angew. Chem., Int. Ed. 2015, 54, 11966;
d) M. Yanagi, A. Imayoshi, Y. Ueda, T. Furuta, T. Kawabata, Org. Lett.
2017, 19, 3099.
[22] a) J. García, A. Díaz-Rodríguez, S. Fernandez, Y. S. Sanghvi, M. Ferrero,
V. Gotor, J. Org. Chem. 2006, 71, 9765; b) J. Maity, G. Shakya, S. K.
Singh, V. T. Ravikumar, V. S. Parmar, A. K. Prasad, J. Org. Chem. 2008,
73, 5629; c) W. Muramatsu, Y. Takemoto, J. Org. Chem. 2013, 78, 2336;
d) C. L. Allen, S. J. Miller, Org. Lett. 2013, 15, 6178.
[6]
a) G. Xiao, G. A. Cintron-Rosado, D. A. Glazier, B. Xi, C. Liu, P. Liu, W.
Tang, J. Am. Chem. Soc. 2017, 139, 4346; b) Heterocycles 2019, 98,
304.
This article is protected by copyright. All rights reserved.