Dubois et al.2a, pendant bases in ligand can couple the electron
and proton transfer, and avoid the large energy barrier of Ni(III)-H
for the hydrogen oxidation reaction. In our case, the proton relay
may also promote the proton coupled electron transfer process,
and provide a new pathway for hydrogen evolution reaction
without a high energy intermediate Ni(0)-H being involved, thus
lowering the overpotential significantly. Besides, the pendant base
1326. (b) Z. Wang, L. Wang, Sci. China Mater. 2018, 61, 806; (c) F.
Xiao, W. Zhou, B. Sun, H. Li, P. Qiao, L. Ren, X. Zhao, H. Fu, Sci. China
Mater. 2018, 61, 822; (d) Z. Zhao, Y. Xing, H. Li, P. Feng, Z. Sun, Sci.
China Mater. 2018, 61, 851; (e) Z. Qin, M. Wang, R. Li, Y. Chen, Sci.
China Mater. 2018, 61, 861; (f) K.-H. Ye, Z. Wang, H. Li, Y. Yuan, Y.
Huang, W. Mai, Sci. China Mater. 2018, 61, 887; (g) X. Sun, J. Huo, Y.
Yang, L. Xu, S. Wang, J. Energy Chem. 2017, 26, 1136; (h) S. Wang,
S. P. Jiang, Natl. Sci. Rev. 2017, 4, 163; (i) Y. Chen, Y. Zhang, Y. Ma, T.
Tang, Z. Dai, J. Hu, L. Wan, Chin. J. Chem. 2017, 35, 911; (j) X. Dou, W.
Liu, Q. Liu, Z. Niu, Chin. J. Chem. 2017, 35, 405; (k) L. Wang, W. Wang,
Chin. J. Chem. 2017, 35, 148.
in the ligand can be protonated preferentially to form
a
quaternary ammonium cation in acidic conditions, which helps to
prevent the complex decomposition, because the cation will
hinder further protonation of the diiminopyridine ligand. The
complex 1 can be stable in 50 mM TfOH but as a control, the
complex 2 and 3 without a pendant base decompose when the
acid concentration is in excess of 15 mM.
The icat/ip of complex 1 is as high as 123 when the acid
concentration is 31.1 mM. Through the slope of the linear plot, a
third-order rate constant was calculated to be 2.7×106 M-2 s-1,
indicating a remarkable turnover frequency of 2572 s-1 in 31.1 mM
TfOH. This third-order rate constant is 10-100 times larger than
that of Ni complexes with non-redox active cyclic diphosphine, but
also with pendant amines in the second coordination sphere
reported previously by DuBois (Table S4).2 Electron paramagnetic
resonance (EPR) of complex 1 after one-electron reduction by 1
eq of 1.0 M Li(BEt3H) shows the existence of the ligand radical
(Ni2+ Ni+) after one-electron reduction (Figure S12), which
supports our assumption that is presented in Scheme 1.
[2] (a) M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L.
DuBois, Science 2011, 333, 863; (b) B. Ginovska-Pangovska, A. Dutta,
M. L. Reback, J. C. Linehan, W. J. Shaw, Acc. Chem. Res. 2014, 47,
2621; (c) T. Liu, M. R. DuBois, D. L. DuBois, R. M. Bullock, Energy
Environ. Sci. 2014, 7, 3630; (d) A. D. Wilson, R. H. Newell, M. J.
McNevin, J. T. Muckerman, M. Rakowski DuBois, D. L. DuBois, J. Am.
Chem. Soc. 2006, 128, 358; (e) O. A. Ulloa, M. T. Huynh, C. P. Richers,
J. A. Bertke, M. J. Nilges, S. Hammes-Schiffer, T. B. Rauchfuss, J. Am.
Chem. Soc. 2016, 138, 9234; (f) P. Huo, C. Uyeda, J. D. Goodpaster, J.
C. Peters, T. F. Miller, ACS Catal. 2016, 6, 6114; (g) B. H. Solis, S. J.
Hammes-Schiffer, J. Am. Chem. Soc. 2011, 133, 19036.
[3] (a) P. Du and R. Eisenberg, Energy Environ. Sci. 2012, 5, 6012; (b) R. S.
Nicholson, I. Shain, Anal. Chem. 1964, 36, 706 (c) J. R. McKone, S. C.
Marinescu, B. S. Brunschwig, J. R. Winkler and H. B. Gray, Chem. Sci.
2014, 5, 865; (d) B. D. Stubbert, J. C. Peters and H. B. Gray, J. Am.
Chem. Soc. 2011, 133, 18070; (e) O. R. Luca, S. J. Konezny, J. D.
Blakemore, D. M. Colosi, S. Saha, G. W. Brudvig, V. S. Batista and R. H.
Crabtree, New J. Chem. 2012, 36, 1149; (f) M. T. M. Koper and E.
Bouwman, Angew. Chem., Int. Ed. 2010, 49, 3723; (g) X. Hu, S.
Brunschwig and J. C. Peters, J. Am. Chem. Soc. 2007, 129, 8988; (h) E.
J. Thompson and L. A. Grapperhaus, Angew. Chem., Int. Ed. 2015,
54,11642; (i) X. Chen, H. Ren, W. Peng, H. Zhang, J. Lu and L. Zhuang,
J. Phys. Chem. C 2014, 118, 20791; (j) A. Z. Haddad, B. D. Garabato, P.
M. Kozlowski, R. M. Buchanan and C. A. Grapperhaus, J. Am. Chem.
Soc. 2016, 138, 7844; (k) O. R. Luca, J. D. Blakemore, S. J. Konezny, J.
M. Praetorius, T. J. Schmeier, G. B. Hunsinger, V. S. Batista, G. W.
Brudvig, N. Hazari and R. H. Crabtree, Inorg. Chem. 2012, 51, 8704; (l)
V. Lyaskovskyy and B. de Bruin, ACS Catal. 2012, 2, 270. (m) D.
Brazzolotto, M. Gennari, N. Queyriaux, T. R. Simmons, J. Pécaut, S.
Demeshko, F. Meyer, M. Orio, V. Artero and C. Duboc, Nat. Chem.
2016, 8, 1054. (n) A. Z. Haddad, B. D. Garabato, P. M. Kozlowski, R. M.
Buchanan and C. A. Grapperhaus, J. Am. Chem. Soc. 2015, 137, 9238.
(o) E. J. Thompson and L. A. Berben, Angew. Chem., Int. Ed. 2015, 54,
11642. (p) J. M. Saveant, E. Vianello, Electrochimica Acta 1965, 10,
905.
Conclusions
We have designed a Ni complex with high electrocatalytic
activity for hydrogen evolution by incorporation of a non-innocent
diiminopyridine ligand with a pendant base in the second
coordination sphere for nickel. We further showed that the
electronic structure of a non-innocent ligand plays a critical role in
regulation of the activity of molecular catalysts. The electronic
withdrawing/donating effect of substituents could alter the
kinetics of metal hydride formation without making any obvious
change in the potential for molecular reduction, and this finally
leads to a large difference in catalytic activity. Thus, a practical
approach was found to eliminate the deleterious coupling
between metal center reduction and metal hydride formation.
Our findings are critical to a further understanding of the
properties of non-innocent ligands and the hydrogen evolution
reaction, which opens an avenue to the design of new catalysts
with non-innocent ligands for redox reactions.
[4] (a) S. C. Marinescu, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. USA
2012, 109, 15127; (b) L. M. A. Quintana, S. I. Johnson, S. L. Corona, W.
Villatoro, W. A. Goddard, M. K. Takase, D. G. VanderVelde, J. R.
Winkler, H. B. Gray, J. D. Blakemore, Proc. Natl. Acad. Sci. USA 2016,
113, 6409. (c) H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada and S.
Fukuzumi, Chem. Eur. J., 2011, 17, 2777.
[5] S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. Meyer-Klaucke,
E. Warkentin, R. K. Thauer, U. Ermler, Science 2008, 321, 572.
[6] A. Adamska, A. Silakov, C. Lambertz, O. Rüdiger, T. Happe, E. Reijerse,
W. Lubitz, Angew. Chem. Int. Ed. 2012, 51, 11458.
[7] (a) P. J. Chirik, Inorg. Chem. 2011, 50, 9737; (b) C. H. Hsieh, S. Ding, O.
F. Erdem, D. J. Crouthers, T. Liu, C. C. McCrory, W. Lubitz, C. V.
Popescu, J. H. Reibenspies, M. B. Hall, M. Y. Darensbourg, Nat.
Commun. 2014, 5, 3684; (c) O. R. Luca, R. H. Crabtree, Chem. Soc.
Rev. 2013, 42, 1440; (d) V. Lyaskovskyy, B. de Bruin, ACS Catal. 2012,
2, 270; (e) T. D. Manuel, J. U. Rohde, J. Am. Chem. Soc. 2009, 131,
15582; (f) J. V. Obligacion, S. P. Semproni, P. J. Chirik, J. Am. Chem.
Soc. 2014, 136, 4133; (g) A. C. Bowman, C. Milsmann, E. Bill, E.
Lobkovsky, T. Weyhermꢀller, K. Wieghardt, P. J. Chirik, Inorg. Chem.
2010, 49, 6110; (h) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am.
Chem. Soc. 2010, 132, 16774; (i) W. H. Harman, Z. P. Lin, J. C. Peters,
Supporting Information
The supporting information for this article is available on the
Acknowledgement
Dedicated to Academician Xiyan Lu on the occasion of his 90th
birthday.
This study was supported by grants from Major State Basic
Research Development Program of China (2015CB932303),
Top-Notch Young Talents Program of China, and National Natural
Science Foundation of China (21373175, 2151101071, and
21321062). We thank Huayan Yang and Dongyu Liu for helpful
discussions and sample test.
References
[1] (a) A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye,
A. Fihri, S. Palacin, M. Fontecave, Science 2009, 326, 1384; (b) B.
Rausch, M. D. Symes, G. Chisholm, L. Cronin, Science 2014, 345,
This article is protected by copyright. All rights reserved.