E. J. Tisdale et al. / Tetrahedron Letters 44 (2003) 3281–3284
3283
benzaldehyde (16) was protected as the corresponding
silyl ether 7 and subsequently alkylated with the lithium
salt of 8 to afford benzylic alcohol 17 in 52% yield.
Oxidation of 17 with Dess–Martin periodinane in
CH2Cl2 gave rise to benzophenone 18 in 66% yield.17
Deprotection of the MEM ethers of 18 was accom-
plished using an excess of ZnBr2 in CH2Cl2 producing
hydroquinone 19 in 70% yield.16 The stage was now set
for an oxidation of the hydroquinone ring and subse-
quent conjugate addition. Surprisingly, the desired oxi-
dation proved to be more problematic than expected.
Mild heterogeneous oxidants, such as MnO2 were
found to be completely ineffective.18 After several
experimental attempts we found that the best condi-
tions involved treatment of 19 with IBX in 5% DMF/
CHCl3 at ambient temperature producing quinone 20 in
31% yield.19 It was also possible to effect the same
oxidation with Dess–Martin periodinane in CH2Cl2.
Nonetheless, the Dess–Martin oxidation did not offer
an increase in yield or any other distinct advantage over
the IBX oxidation except for a more rapid reaction
time. With the red-colored quinone 20 in hand, the final
deprotection and sequential cyclization could be tested.
Along these lines, treatment of 20 with TBAF in THF
produced a brown solution which, over a 1 h period,
became increasingly yellow. This hypsochromic shift
suggested that the initially formed colored quinone 6
could react in situ to produce a less chromophoric
hydroquinone structure. Indeed, isolation, followed by
spectroscopic and analytical characterization of the
major product of this reaction confirmed the total
synthesis of atroviridin (1).
Lajis, N. H.; Mackeen, M. M.; Ali, A. M.; Aimi, N.;
Kitajima, M.; Takayama, H. J. Nat. Prod. 2001, 64,
976–979.
2. The Garcinia species belongs to the Guttiferae family of
tropical plants (also known as the Clusiaceae family). For
general references on natural products isolated from these
plants, see: (a) Ollis, W. D.; Redman, B. T.; Sutherland,
I. O.; Jewers, K. J. Chem. Soc., Chem. Commun. 1969,
879–880; (b) Kumar, P.; Baslas, R. K. Herba Hungarica
1980, 19, 81–91; (c) Thoison, O.; Fahy, J.; Dumontet, V.;
Chiaroni, A.; Riche, C.; Tri, M. V.; Sevenet, T. J. Nat.
Prod. 2000, 63, 441–446.
3. (a) Wolfrom, M. L.; Dickey, E. E.; McWain, P.; Thomp-
son, A.; Looker, J. H.; Windrath, O. M.; Komitsky, F.,
Jr. J. Org. Chem. 1964, 29, 689–691; (b) Wolfrom, M. L.;
Komitsky, F., Jr.; Looker, J. H. J. Org. Chem. 1965, 30,
144–149.
4. (a) Rao, B. S. J. Chem. Soc. (C) 1937, 853–857; (b)
Kartha, G.; Ramachandran, G. N.; Bhat, H. B.; Nair, P.
M.; Raghavan, V. K. V.; Venkataraman, K. Tetrahedron
Lett. 1963, 4, 459–472.
5. Karanjgaongar, C. G.; Nair, P. M.; Venkataraman, K.
Tetrahedron Lett. 1966, 7, 687–691.
6. Kosela, S.; Cao, S.-G.; Wu, X.-H.; Vittal, J. J.; Sukri, T.;
Masdianto; Goh, S.-H.; Sim, K.-Y. Tetrahedron Lett.
1999, 40, 157–160.
7. (a) Roberts, J. C. Chem. Rev. 1961, 61, 591–605; (b)
Carpenter, I.; Locksley, H. D.; Scheinmann, F. Phyto-
chemistry 1969, 8, 2013–2026; (c) Bennett, G. J.; Lee,
H.-H. J. Chem. Soc., Chem. Commun. 1988, 619–620; (d)
Quillinan, A. J.; Scheinmann, F. J. Chem. Soc., Chem.
Commun. 1971, 966–967.
8. Tisdale, E. J.; Chowdhury, C.; Vong, B. G.; Li, H.;
Theodorakis, E. A. Org. Lett. 2002, 4, 909–912.
9. Sardessai, M. S.; Abramson, H. N. Org. Prep. Proceed.
Int. 1991, 23, 419–424.
10. (a) Claisen, L. Ber. Dtsch. Chem. Ges. 1912, 45, 3157. For
recent and selected reviews on Claisen rearrangement,
see: (b) Nowicki, J. Molecules 2000, 5, 1033–1050; (c) Ito,
H.; Taguchi, T. Chem. Soc. Rev. 1999, 28, 43–50; (d)
Gajewski, J. J. Acc. Chem. Res. 1997, 30, 219–225; (e)
Ziegler, F. E. Chem. Rev. 1988, 88, 1423–1452; (f) Wipf,
P. In Comprehensive Org. Synth.; Trost, B. M.; Fleming,
I., Eds.; 1991, 5, 827.
11. Wriede, U.; Fernandez, M.; West, K. F.; Harcourt, D.;
Moore, H. W. J. Org. Chem. 1987, 52, 4485–4489.
12. Godfrey, J. D., Jr.; Mueller, R. H.; Sedergran, T. C.;
Soundararajan, N.; Colandrea, V. J. Tetrahedron Lett.
1994, 35, 6405–6408.
In conclusion, we have presented an efficient and con-
vergent synthesis of atroviridin (1), a member of the
xanthone and xanthonoid natural products pool iso-
lated from the Garcinia species of tropical plants. Our
strategy highlights the use of a cerium ammonium
nitrate-mediated oxidative demethylation and tandem
Claisen cyclization to form chromenequinone 15. This
spontaneously occurring Claisen rearrangement is rare
in the literature and this occurrence may in fact be the
only case in which it has been used in the context of the
total synthesis of a natural product. Additionally, the
final deprotection protocol with concomitant annula-
tion to form atroviridin (1) mirrors a proposed biosyn-
thetic pathway for xanthone and xanthonoid natural
products.
13. The spontaneous propargylic Claisen rearrangement on
quinones has previoulsy been noted but its occurance in
the literature appears to be limited. For one reference,
see: Brown, P. E.; Lewis, R. A.; Waring, M. A. J. Chem.
Soc., Perkin Trans. 1 1990, 2979–2988.
14. (a) Tomatsu, A.; Takemura, S.; Hashimoto, K.; Nakata,
M. Synlett 1999, 1474–1476; (b) Knolker, H.-J.; Baum,
E.; Reddy, K. R. Tetrahedron Lett. 2000, 41, 1171–1174.
15. Pugh, C. Org. Lett. 2000, 2, 1329–1331.
Acknowledgements
Financial support from the NIH (CA085600) is grate-
fully acknowledged. We also thank the San Diego
Chapter of the ARCS Foundation for their support
through a graduate student fellowship to E.J.T.
16. Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett.
1976, 17, 809–812.
References
17. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113,
7277–7287.
1. (a) Kosin, J.; Ruangrungsi, N.; Ito, C.; Furukawa, H.
Phytochemistry 1998, 47, 1167–1168; (b) Parmana, D.;