ACS Catalysis
Page 6 of 8
(21) Liégault, B.; Petrov, I.; Gorelsky, S. I.; Fagnou, K. Modulating
REFERENCES
(1) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. Rings in Drugs.
J. Med. Chem. 2014, 57, 5845–5859.
Reactivity and Diverting Selectivity in Palladium-Catalyzed
Heteroaromatic Direct Arylation through the Use of a Chloride
Activating/Blocking Group. J. Org. Chem. 2010, 75, 1047–1060.
(22) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J.
Mild Metal-Catalyzed C-H Activation: Examples and Concepts. Chem.
Soc. Rev. 2016, 45, 2900–2936.
(23) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.;
Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord,
J.; Besset, T.; Maes, B. U. W.; Schnürch, M. A Comprehensive
Overview of Directing Groups Applied in Metal-Catalysed C-H
Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47, 6603–6743.
(24) Gandeepan, P.; Ackermann, L. Transient Directing Groups for
Transformative C–H Activation by Synergistic Metal Catalysis. Chem
2018, 4, 199–222.
(25) Lane, B. S.; Brown, M. A.; Sames, D. Direct Palladium-
Catalyzed C-2 and C-3 Arylation of Indoles: A Mechanistic Rationale
for Regioselectivity. J. Am. Chem. Soc. 2005, 127, 8050–8057.
(26) Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R.
Direct Palladium-Catalyzed C-3 Arylation of Indoles. Tetrahedron
Lett. 2007, 48, 2415–2419.
(27) Bellina, F.; Benelli, F.; Rossi, R. Direct Palladium-Catalyzed
C-3 Arylation of Free (NH)-Indoles with Aryl Bromides under
Ligandless Conditions. J. Org. Chem. 2008, 73, 5529–5535.
(28) Cusati, G.; Djakovitch, L. First Heterogeneously Palladium-
Catalysed Fully Selective C3-Arylation of Free NH-Indoles.
Tetrahedron Lett. 2008, 49, 2499–2502.
1
2
3
4
5
6
7
8
(2) Sravanthi, T. V.; Manju, S. L. Indoles — A Promising Scaffold
for Drug Development. Eur. J. Pharm. Sci. 2016, 91, 1–10.
(3) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.;
Verma, A. K.; Choi, E. H. Biomedical Importance of Indoles.
Molecules 2013, 18, 6620–6662.
(4) King, A. O.; Yasuda, N. Palladium-Catalyzed Cross-Coupling
Reactions in the Synthesis of Pharmaceuticals. In Organometallics in
Process Chemistry; Larsen, R., Ed.; Topics in Organometallic
Chemistry; Springer-Verlag: Berlin, Heidelberg, 2004; Vol. 6, pp 205–
245.
(5) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara,
Y. Efficient Activation of Aromatic C-H Bonds for Addition to C-C
Multiple Bonds. Science 2000, 287, 1992–1995.
(6) Daugulis, O.; Zaitsev, V. G. Anilide Ortho-Arylation by Using
C-H Activation Methodology. Angew. Chem. Int. Ed. 2005, 44, 4046–
4048.
(7) Yu, D. G.; Gensch, T.; De Azambuja, F.; Vásquez-Céspedes, S.;
Glorius, F. Co(III)-Catalyzed C-H Activation/Formal SN-Type
Reactions: Selective and Efficient Cyanation, Halogenation, and
Allylation. J. Am. Chem. Soc. 2014, 136, 17722–17725.
(8) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L.
Weakly Coordinating Directing Groups for Ruthenium(II)-Catalyzed
C-H Activation. Adv. Synth. Catal. 2014, 356, 1461–1479.
(9) Schranck, J.; Tlili, A.; Beller, M. Functionalization of Remote C-
H Bonds: Expanding the Frontier. Angew. Chem. Int. Ed. 2014, 53,
9426–9428.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(29) Join, B.; Yamamoto, T.; Itami, K. Iridium Catalysis for C-H
Bond Arylation of Heteroarenes with Iodoarenes. Angew. Chem. Int.
Ed. 2009, 48, 3644–3647.
(10) Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of Extended π-
Systems through C-H Activation. Angew. Chem. Int. Ed. 2015, 54, 66–
81.
(30) Perato, S.; Large, B.; Lu, Q.; Gaucher, A.; Prim, D.
Pyridylmethylamine–Palladium Catalytic Systems:
A Selective
Alternative in the C−H Arylation of Indole. ChemCatChem 2017, 9,
389–392.
(11) Kurokhtina, A. A.; Larina, E. V.; Yarosh, E. V.; Lagoda, N. A.;
Schmidt, A. F. Mechanistic Study of Direct Arylation of Indole Using
Differential Selectivity Measurements: Shedding Light on the Active
Species and Revealing the Key Role of Electrophilic Substitution in the
Catalytic Cycle. Organometallics 2018, 37, 2054–2063.
(12) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. Analysis of the
Concerted Metalation-Deprotonation Mechanism in Palladium-
Catalyzed Direct Arylation across a Broad Range of Aromatic
Substrates. J. Am. Chem. Soc. 2008, 130, 10848–10849.
(13) Guihaumé, J.; Clot, E.; Eisenstein, O.; Perutz, R. N. Importance
of Palladium–Carbon Bond Energies in Direct Arylation of
Polyfluorinated Benzenes. Dalt. Trans. 2010, 39, 10510.
(14) García-Melchor, M.; Gorelsky, S. I.; Woo, T. K. Mechanistic
Analysis of Iridium(III) Catalyzed Direct C-H Arylations: A DFT
Study. Chem. Eur. J. 2011, 17, 13847–13853.
(15) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. Analysis of the
Palladium-Catalyzed (Aromatic)C-H Bond Metalation- Deprotonation
Mechanism Spanning the Entire Spectrum of Arenes. J. Org. Chem.
2012, 77, 658–668.
(16) Santoro, S.; Himo, F. Mechanism and Selectivity of Rhodium-
Catalyzed C-H Bond Arylation of Indoles. Int. J. Quantum Chem.
2018, 118, e25526.
(31) Yamaguchi, M.; Suzuki, K.; Sato, Y.; Manabe, K. Palladium-
Catalyzed Direct C3-Selective Arylation of n-Unsubstituted Indoles
with Aryl Chlorides and Triflates. Org. Lett. 2017, 19, 5388–5391.
(32) Vaidya, G. N.; Fiske, S.; Verma, H.; Lokhande, S. K.; Kumar,
D. A Micellar Catalysis Strategy Applied to the Pd-Catalyzed C-H
Arylation of Indoles in Water. Green Chem. 2019, 21, 1448–1454.
(33) Chen, J.; Wu, J. Transition-Metal-Free C3 Arylation of Indoles
with Aryl Halides. Angew. Chem. Int. Ed. 2017, 56, 3951–3955.
(34) Ackermann, L.; Dellacqua, M.; Fenner, S.; Vicente, R.;
Sandmann, R. Metal-Free Direct Arylations of Indoles and Pyrroles
with Diaryliodonium Salts. Org. Lett. 2011, 13, 2358–2360.
(35) Dekker, W. H.; Selling, H. A.; Overeem, J. C. Structure-
Activity Relations of Some Antifungal Indoles. J. Agric. Food Chem.
1975, 23, 785–791.
(36) Wu, T. S.; Liou, M. J.; Lee, C. J.; Jong, T. T.; McPhail, A. T.;
McPhail, D. R.; Lee, K. H. Structure and Synthesis of Murrapanine, a
Novel Skeletal Indole-Naphthoquinone Alkaloid and Cytotoxic
Principal from Murraya Paniculata Var. Omphalocarpa. Tetrahedron
Lett. 1989, 30, 6649–6652.
(37) Pedras, M. S. C.; Hossain, M. Design, Synthesis, and
Evaluation of Potential Inhibitors of Brassinin Glucosyltransferase, a
Phytoalexin Detoxifying Enzyme from Sclerotinia Sclerotiorum.
Bioorg. Med. Chem. 2007, 15, 5981–5996.
(38) Leboho, T. C.; Michael, J. P.; van Otterlo, W. A. L.; van
Vuuren, S. F.; de Koning, C. B. The Synthesis of 2- and 3-Aryl Indoles
and 1,3,4,5-Tetrahydropyrano[4,3-b]Indoles and Their Antibacterial
and Antifungal Activity. Bioorg. Med. Chem. Lett. 2009, 19, 4948–
4951.
(39) Richardson, T. I.; Clarke, C. A.; Yu, K. L.; Yee, Y. K.; Bleisch,
T. J.; Lopez, J. E.; Jones, S. A.; Hughes, N. E.; Muehl, B. S.; Lugar, C.
W.; Moore, T. L.; Shetler, P. K.; Zink, R. W.; Osborne, J. J.; Montrose-
Rafizadeh, C.; Patel, N.; Geiser, A. G.; Galvin, R. J. S.; Dodge, J. A.
Novel 3-Aryl Indoles as Progesterone Receptor Antagonists for Uterine
Fibroids. ACS Med. Chem. Lett. 2011, 2, 148–153.
(17) Steinmetz, M.; Ueda, K.; Grimme, S.; Yamaguchi, J.;
Kirchberg, S.; Itami, K.; Studer, A. Mechanistic Studies on the Pd-
Catalyzed Direct C-H Arylation of 2-Substituted Thiophene
Derivatives with Arylpalladium Bipyridyl Complexes. Chem. Asian J.
2012, 7, 1256–1260.
(18) Colletto, C.; Islam, S.; Juliá-Hernández, F.; Larrosa, I. Room-
Temperature
Direct
β-Arylation
of
Thiophenes
and
Benzo[b]Thiophenes and Kinetic Evidence for a Heck-Type Pathway.
J. Am. Chem. Soc. 2016, 138, 1677–1683.
(19) Tang, S. Y.; Guo, Q. X.; Fu, Y. Mechanistic Origin of Ligand-
Controlled Regioselectivity in Pd-Catalyzed C-H Activation/Arylation
of Thiophenes. Chem. Eur. J. 2011, 17, 13866–13876.
(20) Yamamoto, K.; Kimura, S.; Murahashi, T. σ-π Continuum in
Indole-Palladium(II) Complexes. Angew. Chem. Int. Ed. 2016, 55,
5322–5326.
(40) Patel, P. A.; Kvaratskhelia, N.; Mansour, Y.; Antwi, J.; Feng,
L.; Koneru, P.; Kobe, M. J.; Jena, N.; Shi, G.; Mohamed, M. S.; Li, C.;
ACS Paragon Plus Environment