Rhodium- and Iridium-Catalyzed OxidatiVe Coupling
TABLE 1. Dehydrogenative Coupling of Benzoic Acid (1a) with
Diphenylacetylene (2a)a
SCHEME 1. Transition-Metal-Catalyzed Oxidative
Coupling of Functionalized Aromatic Substrates with
Unsaturated Compounds
% yieldb
entry Cu(OAc)2‚H2O (mmol) solvent temp (°C) time (h) 3a
4a
1c
2c
3c
4d
5d
6d
7d
8d
9d
4
4
2
o-xylene
o-xylene
o-xylene
o-xylene
DMF
DMSO
diglyme
n-nonane
DMF
120
100
100
120
120
120
120
120
100
6
9
10
5
2
5
5
5
5
95
94
90 (81)
25
96 (93)
2
0
0
41
5
2
3
32
3
<1
4
<1
17
Isocoumarin and phthalide nuclei are found in various natural
products that exhibit a broad range of interesting biological
properties.6 Although these reactions have high potential to
provide atom-economic routes to such heterocycles,7,8 their
efficiency is moderate to low: decomposition of the homoge-
neous palladium-based catalyst into inactive bulk metal seems
to be involved. During palladium-catalyzed oxidation, in general,
the regeneration of Pd(II) from Pd(0) is considered to be the
crucial step to determine catalyst efficiency.9 Moreover, the
coupling partners are so far limited to some alkenes, and the
reactions with other unsaturated substrates including alkynes
are unexplored. In the context of our study of catalytic coupling
of benzoic acid derivatives,10 we have succeeded in finding that
the direct oxidative coupling of benzoic acids with internal
alkynes can be realized by using Rh11,12 in place of Pd as the
principal catalyst component to afford isocoumarin derivatives
in good to excellent yields.13 Furthermore, by using an iridium
catalyst, the corresponding naphthalene derivatives can be
produced selectively from the same combination of substrates
0.025
0.025
0.025
0.025
0.025
0.025
a Reaction conditions: [1a]/[2a]/[[Cp*RhCl2]2] ) 0.5:0.6:0.005 (in
mmol), under N2. b GC yield based on the amount of 1a used. Value in
parentheses indicates yield after purification. c [1a]/[2a] ) 1:1.2 (in mmol).
d Under air.
accompanied by decarboxylation. This represents a new example
of aromatic homologation by the coupling of ArX and two
alkyne molecules.14 The results obtained with respect to the
scope and limitations for these reactions are described herein.
Results and Discussion
When benzoic acid (1a) was treated with diphenylacetylene
(2a, 1.2 equiv) in the presence of [Cp*RhCl2]2 (1 mol %) and
Cu(OAc)2‚H2O (4 equiv) in o-xylene at 120 °C for 6 h under
N2, 3,4-diphenylisocoumarin (3a) was formed in 95% yield,
along with a small amount of 1,2,3,4-tetraphenylnaphthalene
(4a, 5%) (entry 1 in Table 1, Cp* ) η5-pentamethylcyclopen-
tadienyl). No amount of 3a or trace amounts of 3a were obtained
in the case using RhCl3‚H2O, Rh(acac)3, [RhCl(cod)]2, or [RhCl-
(C2H4)2]2 in place of [Cp*RhCl2]2 (acac ) acetylacetonate, cod
) cyclooctadiene). Although the reaction was somewhat
retarded, 3a was obtained in 90% yield even using a reduced
amount of Cu(OAc)2‚H2O (2 equiv) at 100 °C (entry 3). The
amount of the copper salt could be reduced to 5 mol % when
the reaction was conducted under air. Thus, the aerobic oxidative
coupling of 1a with 2a using a catalyst system of [Cp*RhCl2]2/
Cu(OAc)2‚H2O proceeded efficiently in DMF at 120 °C to afford
3a in 96% yield (entry 5). DMF was found to be the solvent of
choice. Thus, a significant amount of 4a (32%) was formed
accompanied by a decrease of the yield of 3a in o-xylene (entry
4). The reaction did not proceed catalytically in other solvents
(5) Recently, palladium-catalyzed ipso-decarboxylative arylation and
ortho-arylation of arene and heteroarene carboxylic acids were reported.
ipso-Arylation: (a) Gooâen, L. J.; Deng, G.; Levy, L. M. Science 2006,
313, 662. (b) Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.;
Bailey, M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350. ortho-
Arylation: Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.;
Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
(6) For example, see: (a) Rossi, R.; Carpita, A.; Bellina, F.; Stabile, P.;
Mannina, L. Tetrahedron 2003, 59, 2067. (b) Yao, T.; Larock, R. C. J.
Org. Chem. 2003, 68, 5936. (c) Mali, R. S.; Babu, K. N. J. Org. Chem.
1998, 63, 2488 and references cited therein.
(7) Pt-catalyzed lactone synthesis via C-H bond activation directed by a
carboxyl group and oxidative cyclization has been reported: (a) Lee, J.
M.; Chang, S. Tetrahedron Lett. 2006, 47, 1375. (b) Dangel, B. D.; Johnson,
J. A.; Sames, D. J. Am. Chem. Soc. 2001, 123, 8149.
(8) For recent reports concerning Pd-catalyzed synthesis of isocoumarins
and phthalides, see: (a) Mereyala, H. B.; Pathuri, G. Synthesis 2006, 2944.
(b) Subramanian, V.; Rao Batchu, V.; Barange, D.; Pal, M. J. Org. Chem.
2005, 70, 4778. (c) Wu, X.; Mahalingam, A. K.; Wan, Y.; Alterman, M.
Tetrahedron Lett. 2004, 45, 4635. (d) Lee, Y.; Fujiwara, Y.; Ujita, K.;
Nagamoto, M.; Ohta, H.; Shimizu, I. Bull. Chem. Soc. Jpn. 2001, 74, 1437.
(e) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem. 1999, 64, 8770. (f)
Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. J.
Org. Chem. 1999, 64, 6583. (g) Liao, H.-Y.; Cheng, C.-H. J. Org. Chem.
1995, 60, 3711. (h) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K.
C. J. Org. Chem. 1995, 60, 3270.
(9) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400 and references
therein.
(12) For examples of rhodium-catalyzed aerobic oxidation, see: (a)
Fazlur-Rahman, A. K.; Tsai, J.-C.; Nicholas, K. M. J. Chem. Soc., Chem.
Commun. 1992, 1334. (b) Bressan, M.; Morvillo, A. Inorg. Chim. Acta
1989, 166, 177. (c) Mimoun, H. Angew. Chem., Int. Ed. Engl. 1982, 21,
734. (d) Mimoun, H.; Perez-Machirant, M. M.; Se´re´e de Roch, I. J. Am.
Chem. Soc. 1978, 100, 5437.
(10) (a) Sugihara, T.; Satoh, T.; Miura, M. Tetrahedron Lett. 2005, 46,
8269. (b) Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. AdV. Synth. Catal.
2004, 346, 1765. (c) Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. Angew.
Chem., Int. Ed. 2003, 42, 4672. (d) Yasukawa, T.; Satoh, T.; Miura, M.;
Nomura, M. J. Am. Chem. Soc. 2002, 124, 12680. (e) Okazawa, T.; Satoh,
T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 5286. (f) Oguma,
K.; Miura, M.; Satoh, T.; Nomura, M. J. Organomet. Chem. 2002, 648,
297. (g) Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett.
2000, 41, 2655. (h) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M.
J. Org. Chem. 1996, 61, 6941. (i) Kokubo, K.; Miura, M.; Nomura, M.
Organometallics 1995, 14, 4521.
(13) Preliminary communication: Ueura, K.; Satoh, T.; Miura, M. Org.
Lett. 2007, 9, 1407.
(14) Related naphthalene synthesis by the 1:2 coupling of ArX with
internal alkynes: X ) CrPh2: (a) Whitesides, G. M.; Ehmann, W. J. J.
Am. Chem. Soc. 1970, 92, 5625. (b) Herwig, W.; Metlesics, W.; Zeiss, H.
J. Am. Chem. Soc. 1959, 81, 6203. X ) I: (c) Kawasaki, S.; Satoh, T.;
Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 6836. (d) Wu, G.;
Rheingold, A. L.; Feib, S. L.; Heck, R. F. Organometallics 1987, 6, 1941.
(e) Sakakibara, T.; Tanaka, Y.; Yamasaki, T.-I. Chem. Lett. 1986, 797. X
) COCl: see ref 7d. o-Dihalobenzenes: Huang, W.; Zhou, X.; Kanno,
K.-I.; Takahashi, T. Org. Lett. 2004, 6, 2429.
(11) Rh-Catalyzed oxidative coupling of unactivated aromatic compounds
with alkenes has been reported: (a) Matsumoto, T.; Periana, R. A.; Taube,
D. J.; Yoshida, H. J. Catal. 2002, 206, 272. (b) Matsumoto, T.; Yoshida,
H. Chem. Lett. 2000, 1064.
J. Org. Chem, Vol. 72, No. 14, 2007 5363