M. Lüthy, R. J. K. Taylor / Tetrahedron Letters 53 (2012) 3444–3447
3447
O
O
BMIDA
(1.1 equiv.)
R
BMIDA
Pd(PPh3)2NBS (3 mol%)
aq Na2CO3
THF, reflux, 6 h
OTs
24
1b
R
93-98%
O
O
O
O
R
Ph
Ph
28: 98% (E/Z = 6/94)
3 (R = C6H13): 96%
29 (R = C8H17): 96%
30: 93%
31: 96%
Scheme 2. Scope of MIDA boronates in the Suzuki coupling with tosylate 1b.
4. Jacks, T. E.; Belmont, D. T.; Briggs, C. A.; Horne, N. M.; Kanter, G. D.; Karrick, G.
L.; Krikke, J. J.; McCabe, R. J.; Mustakis, J. G.; Nanninga, T. N.; Risedorph, G. S.;
Seamans, R. E.; Skeean, R.; Winkle, D. D.; Zennie, T. M. Org. Process Res. Dev.
2004, 8, 201.
5. Burns, A. R.; McAllister, G. D.; Shanahan, S. E.; Taylor, R. J. K. Angew. Chem., Int.
Ed. 2010, 49, 5574.
6. Bhayana, B.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2009, 11, 3954.
7. Nguyen, H. N.; Huang, X. H.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818.
8. Chung, K. H.; So, C. M.; Wong, S. M.; Luk, C. H.; Zhou, Z.; Lau, C. P.; Kwong, F. Y.
Chem. Commun. 2012, 48, 1967.
9. Wong, P. Y.; Chow, W. K.; Chung, K. H.; So, C. M.; Lau, C. P.; Kwong, F. Y. Chem.
Commun. 2011, 47, 8328.
The scope of the nucleophilic coupling partner was tested next
with the previously employed cis-propenyl MIDA boronate 24,5 as
well as with MIDA boronates 25–27,30 using tosylate 1b with a
conventional reflux procedure (Scheme 2). This procedure is of
high practical convenience and excellent yields (>90%) were ob-
tained in all cases. The stereochemistry of the alkenyl group in
the boronate is retained affording, for example, product 28 as the
Z-isomer with only minor traces of the E-isomer, although acid-
catalysed isomerisation was observed to be fairly rapid.
In summary, we have shown that activated and unactivated
alkenyl tosylates can undergo efficient coupling with a variety of
alkenyl groups derived from MIDA boronates in a practical Suzu-
ki–Miyaura cross-coupling reaction. The process involves air stable
and commercially available Pd(PPh3)2NBS as precatalyst and does
not require expensive phosphine ligands. The use of the cheap
and easy to handle PCy3ÁHBF4 salt is sufficient to achieve nearly
quantitative yields with less activated substrates. We are confident
that this robust and practical procedure will be of general use, for
example in the synthesis of synthetic building blocks, as well as for
library synthesis. Furthermore, both the use of alkenyl tosylates
that are easily derived from carbonyl precursors and MIDA boro-
nates, which are known to be stable to a variety of reaction condi-
tions make this method an attractive tool for total synthesis. We
are currently applying this procedure to more complex systems
as part of a natural product synthesis programme.
10. So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008, 47, 8059.
11. So, C. M.; Lau, C. P.; Chan, A. S. C.; Kwong, F. Y. J. Org. Chem. 2008, 73, 7731.
12. Gogsig, T. M.; Sobjerg, L. S.; Lindhardt, A. T.; Jensen, K. L.; Skrydstrup, T. J. Org.
Chem. 2008, 73, 3404.
13. Zhang, L. A.; Meng, T. H.; Wu, J. J. Org. Chem. 2007, 72, 9346.
14. Kang, S. B.; De Clercq, E.; Lakshman, M. K. J. Org. Chem. 2007, 72, 5724.
15. Huffman, M. A.; Yasuda, N. Synlett 1999, 471.
16. Burke, M. D.; Gillis, E. P.; Lee, S. J.; Knapp, D. M.; Gray, K. C. U.S. Patent
20090030238 A1, 2009.
17. Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961.
18. Steinhuebel, D.; Baxter, J. M.; Palucki, M.; Davies, I. W. J. Org. Chem. 2005, 70,
10124.
19. Wu, J.; Zhu, Q.; Wang, L. S.; Fathi, R.; Yang, Z. J. Org. Chem. 2003, 68, 670.
20. During the preparation of this manuscript an example of the Suzuki–Miyaura
coupling of aryl triflates with MIDA boronates was reported: Dick, G. R.;
Woerly, E. M.; Burke, M. D. Angew. Chem., Int. Ed. 2012, 51, 2667.
21. Triflate 1a: Stang, P. J.; Treptow, W. L. J. Med. Chem. 1981, 24, 468.
22. Tosylate 1b: Feigenbaum, A.; Pete, J. P.; Scholler, D. J. Org. Chem. 1984, 49, 2355.
23. Mesylate 1c: Kowalski, C. J.; Fields, K. W. J. Org. Chem. 1981, 46, 197.
24. Uno, B. E.; Gillis, E. P.; Burke, M. D. Tetrahedron 2009, 65, 3130.
25. Knochel, P.; Rao, C. J. Tetrahedron 1993, 49, 29.
26. Burns, M. J.; Fairlamb, I. J. S.; Kapdi, A. R.; Sehnal, P.; Taylor, R. J. K. Org. Lett.
2007, 9, 5397; Fairlamb, I. J. S.; Sehnal, P.; Taylor, R. J. K. Synthesis 2009, 508.
27. Crawforth, C. M.; Burling, S.; Fairlamb, I. J. S.; Taylor, R. J. K.; Whitwood, A. C.
Chem. Commun. 2003, 2194; Crawforth, C. M.; Burling, S.; Fairlamb, I. J. S.;
Kapdi, A. R.; Taylor, R. J. K.; Whitwood, A. C. Tetrahedron 2005, 61, 9736.
28. All tosylates 4–13 were synthesised according to reported procedures from the
corresponding ketone or b-dicarbonyl compound and were generally isolated
as stable solids (see Supplementary data).
Acknowledgement
This work was supported by the Swiss National Science Founda-
tion (SNSF).
29. Fairlamb, I. J. S.; Marrison, L. R.; Dickinson, J. M.; Lu, F. J.; Schmidt, J. P. Bioorg.
Med. Chem. 2004, 12, 4285.
Supplementary data
30. A straightforward approach to generate MIDA boronates 2 and 25–27 was
developed using a hydroboration/transesterification sequence starting from
commercially available or known alkynes with catecholborane and MIDA as
the only reagents (see Supplementary data).
Supplementary data (general procedures and spectral data)
associated with this article can be found, in the online version, at
catecholborane (1 equiv)
neat, 70 °C, 3 h
References and notes
2 53% (R = C6H13
25 59% (R = C8H17
26 74% (R = Ph)
)
)
BMIDA
R
R
1. Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
then MIDA (1 equiv)
DMSO, 60 °C, 3-16 h
2. For an excellent review of transition metal catalysed cross-coupling of enol-
and phenol-based electrophiles, including sulfonates, see: Li, B. J.; Yu, D. G.;
Sun, C. L.; Shi, Z. J. Chem. Eur. J. 2011, 17, 1728.
27 66% (R = CHCHPh)
3. Elitzin, V. I.; Harvey, K. A.; Kim, H.; Salmons, M.; Sharp, M. J.; Tabet, E. A.;
Toczko, M. A. Org. Process Res. Dev. 2010, 14, 912.