10.1002/anie.202105692
Angewandte Chemie International Edition
RESEARCH ARTICLE
[19]
[20]
W. Liu, W. Q. You, W. Sun, W. S. Yang, A. Korde, Y. T.
Gong, Y. L. Deng, Nat. Energy 2020, 5, 759-767
Z. W. Cao, J. Engelhardt, M. Dierks, M. T. Clough, G. H.
Wang, E. Heracleous, A. Lappas, R. Rinaldi, F. Schuth,
Angew. Chem. Int. Ed. 2017, 56, 2334-2339.
W. J. Song, S. J. Zhou, S. H. Hu, W. K. Lai, Y. X. Lian, J.
Q. Wang, W. M. Yang, M. Y. Wang, P. Wang, X. M. Jiang,
ACS Catal. 2019, 9, 259-268.
Conclusion
We reported a method to convert lignin oils to diesel. The lignin
oils undergo dehydrocoupling reaction and generating diesel fuel
precursors and hydrogen, followed by hydrodeoxygenation to
generate cycloalkanes or aromatics. Au/CdS is effective for the
coupling reaction. We found that the combination of Au and CdS
improves the separation of photogenerated electrons and holes,
which finally enhances the coupling activity of Au/CdS. About
[21]
[22]
[23]
[24]
[25]
C. Zhao, J. A. Lercher, Angew. Chem. Int. Ed. 2012, 51,
5935-5940.
C. Zhao, Y. Kou, A. A. Lemonidou, X. B. Li, J. A. Lercher,
Angew. Chem. Int. Ed. 2009, 48, 3987-3990.
L. Dong, Y. Xin, X. H. Liu, Y. Guo, C. W. Pao, J. L. Chen,
Y. Q. Wang, Green Chem. 2019, 21, 3081-3090.
X. C. Wang, M. Arai, Q. F. Wu, C. Zhang, F. Y. Zhao,
Green Chem. 2020, 22, 8140-8168.
C. J. Li, Acc. Chem. Res. 2009, 42, 335-344.
S. A. Girard, T. Knauber, C. J. Li, Angew. Chem. Int. Ed.
2014, 53, 74-100.
-1
-1
2.4 mmol gcatal h-1 of dimers and 1.6 mmol gcatal h-1 of H2 was
generated from 4-ethyl-1-methoxybenzene over Au/CdS, which
is about 12 times that over CdS. Both homo and cross-coupling
products could be obtained from the lignin-derived aromatic
mixture. Hydrodeoxygenation of the coupling products produces
cycloalkanes over Pd/C, and aromatics over CoMoS-P. The
conversion of pine sawdust to diesel was performed to
demonstrate the feasibility of the lignin-to-diesel route.
[26]
[27]
[28]
[29]
[30]
J. C. Colmenares, R. Luque, Chem. Soc. Rev. 2014, 43,
765-778.
D. W. Wakerley, M. F. Kuehnel, K. L. Orchard, K. H. Ly, T.
E. Rosser, E. Reisner, Nat. Energy 2017, 2, 17021.
N. Luo, T. Montini, J. Zhang, P. Fornasiero, E. Fonda, T.
Hou, W. Nie, J. Lu, J. Liu, M. Heggen, L. Lin, C. Ma, M.
Wang, F. Fan, S. Jin, F. Wang, Nat. Energy 2019, 4, 575-
584.
Z. P. Huang, Z. T. Zhao, C. F. Zhang, J. M. Lu, H. F. Liu,
N. C. Luo, J. Zhang, F. Wang, Nat. Catal. 2020, 3, 170-
178.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21872135, 22002011), and China
Postdoctoral Science Foundation (2020M670742).
[31]
[32]
[33]
X. J. Wu, X. T. Fan, S. J. Xie, J. C. Lin, J. Cheng, Q. H.
Zhang, L. Y. Chen, Y. Wang, Nat. Catal. 2018, 1, 772-780.
S. Song, J. F. Qu, P. J. Han, M. J. Hulsey, G. P. Zhang, Y.
Z. Wang, S. Wang, D. Y. Chen, J. M. Lu, N. Yan, Nat.
Commun. 2020, 11, 4899.
Keywords: photocatalysis • lignin • diesel • C−C coupling •
hydrogen
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
D. C. Jiang, Z. J. Sun, H. X. Jia, D. P. Lu, P. W. Du, J.
Mater. Chem. A 2016, 4, 675-683.
C. Qiao, X. F. Liu, X. Liu, L. N. He, Org. Lett. 2017, 19,
1490-1493.
X. L. Yin, J. Liu, W. J. Jiang, X. Zhang, J. S. Hu, L. J. Wan,
Chem. Commun. 2015, 51, 13842-13845.
H. Zhao, M. Wu, J. Liu, Z. Deng, Y. Li, B. L. Su, Appl.
Catal. B-Environ. 2016, 184, 182-190.
Z. B. Yu, Y. P. Xie, G. Liu, G. Q. Lu, X. L. Ma, H. M.
Cheng, J. Mater. Chem. A 2013, 1, 2773-2776.
S. Y. Bao, Q. F. Wu, S. Z. Chang, B. Z. Tian, J. L. Zhang,
Catal. Sci. Technol. 2017, 7, 124-132.
C. Tai, H. R. Liu, Y. Hu, ACS Sustain. Chem. Eng. 2020, 8,
18196-18205.
X. L. Wang, X. Z. Zheng, H. J. Han, Y. Fan, S. J. Zhang, S.
G. Meng, S. F. Chen, J. Solid State Chem. 2020, 289,
121495.
B. Z. Tian, C. Z. Li, F. Gu, H. B. Jiang, Catal. Commun.
2009, 10, 925-929.
X. L. Li, G. Q. Yang, S. S. Li, N. Xiao, N. Li, Y. Q. Gao, D.
Lv, L. Ge, Chem. Eng. J. 2020, 379, 122350.
[1]
C. Li, X. Zhao, A. Wang, G. W. Huber, T. Zhang, Chem.
Rev. 2015, 115, 11559-11624.
M. Wang, F. Wang, Adv. Mater. 2019, 31, 1901866.
W. Schutyser, T. Renders, S. Van den Bosch, S. F.
Koelewijn, G. T. Beckham, B. F. Sels, Chem. Soc. Rev.
2018, 47, 852-908.
D. S. Bajwa, G. Pourhashem, A. H. Ullah, S. G. Bajwa, Ind.
Crop. Prod. 2019, 139, 111526
Z. H. Sun, J. L. Cheng, D. S. Wang, T. Q. Yuan, G. Y.
Song, K. Barta, ChemSusChem 2020, 13, 5199-5212.
S. S. Wong, R. Y. Shu, J. G. Zhang, H. C. Liu, N. Yan,
Chem. Soc. Rev. 2020, 49, 5510-5560.
Z. H. Sun, B. Fridrich, A. de Santi, S. Elangovan, K. Barta,
Chem. Rev. 2018, 118, 614-678.
S. Song, J. G. Zhang, G. Gozaydin, N. Yan, Angew. Chem.
Int. Ed. 2019, 58, 4934-4937.
X. Huang, J. M. Ludenhoff, M. Dirks, X. Ouyang, M. D.
Boot, E. J. M. Hensen, ACS Catal. 2018, 8, 11184−11190.
M. Wang, M. J. Liu, H. J. Li, Z. T. Zhao, X. C. Zhang, F.
Wang, ACS Catal. 2018, 8, 6837-6843.
X. H. Ouyang, X. M. Huang, M. D. Boot, E. J. M. Hensen,
ChemSusChem 2020, 13, 1705-1709.
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[42]
[43]
[10]
[11]
[12]
Y. Liao, S.-F. Koelewijn, G. V. d. Bossche, J. V. Aelst, S. V.
d. Bosch, T. Renders, K. Navare, T. Nicolaï, K. V. Aelst, M.
Maesen, H. Matsushima, J. Thevelein, K. V. Acker, B.
Lagrain, D. Verboekend, B. F. Sels, Science 2020, 367,
1385–1390.
[13]
[14]
J. Yan, Q. L. Meng, X. J. Shen, B. F. Chen, Y. Sun, J. F.
Xiang, H. Z. Liu, B. X. Han, Sci. Adv. 2020, 6, eabd1951.
S. Elangovan, A. Afanasenko, J. Haupenthal, Z. H. Sun, Y.
Z. Liu, A. K. H. Hirsch, K. Barta, ACS Central. Sci. 2019, 5,
1707-1716.
[15]
[16]
[17]
[18]
Z. H. Sun, G. Bottari, A. Afanasenko, M. C. A. Stuart, P. J.
Deuss, B. Fridrich, K. Barta, Nat. Catal. 2018, 1, 82-92.
Z. Chen, H. Zeng, S. A. Girard, F. Wang, N. Chen, C. J. Li,
Angew. Chem. Int. Ed. 2015, 54, 14487-14491.
Z. H. Qu, H. Y. Zeng, C. J. Li, Acc. Chem. Res. 2020, 53,
2395-2413.
X. W. Zhang, L. Pan, L. Wang, J. J. Zou, Chem. Eng. Sci.
2018, 180, 95-125.
5
This article is protected by copyright. All rights reserved.