Novel En zym a tic Syn th esis of
4-O-Cin n a m oyl Qu in ic a n d Sh ik im ic Acid
Der iva tives
Nuria Armesto, Miguel Ferrero, Susana Ferna´ndez, and
Vicente Gotor*
Departamento de Quı´mica Orga´nica e Inorga´nica,
Facultad de Quı´mica, Universidad de Oviedo,
33071-Oviedo, Spain
F IGURE 1. Caffeoyl derivatives of quinic acid.
has antibacterial, antimutagenic, antitumor, and anti-
viral properties.5 It has been shown that a number of
these phenolics act as antioxidants, with plural mecha-
nisms involving free-radical scavenging and metal ion
chelation.4b,c Their antioxidative action could prevent
oxidative damage in vivo relating to various diseases such
as cancer4d,e or cardiovascular diseases,2a,6 as well as
offering other curative properties (anti-inflammatory,
astringent, antispasmodic, antibacterial, etc.).4a,7 Re-
cently, some of these phenolics8 have been shown to
present inhibitory effects on HIV-integrase (2, Figure 1).
vgs@sauron.quimica.uniovi.es
Received March 25, 2003
Abstr a ct: The first direct synthesis of 4-O-cinnamoyl
derivatives of quinic and shikimic acids were accomplished
by regioselective esterification with Candida antarctica
lipase A. For hydrocinnamic esters, enzymatic transesteri-
fication with vinyl esters gave excellent yields. However,
more reactive acylating agents such as anhydrides were used
to synthesize cinnamic derivatives of both acids. An inhibi-
tory effect was observed with this lipase for p-methoxy,
p-hydroxy, and p-acetoxy vinyl ester and anhydride deriva-
tives (coumarate and ferulate derivatives).
Most of the cinnamoyl derivatives described in the
literature are related to quinic acid,4-8 and only a few
publications report on cinnamoyl shikimic acid deriva-
tives.2c,9 Most of these compounds are isolated from plant
sources1-9 or synthesized by random isomerization of the
available acid.8a,10 The occurrence in nature of phenolic
esters with quinic and shikimic acids is extensive, since
the presence of various hydroxyl groups in the molecule
increases the number of possible esters. In fact, several
new derivatives have been isolated over the past few
years.7b,11 Recently, Sefkow12 described the first efficient
synthesis of 1-, 3-, 4-, and 5-caffeoylquinic acids starting
from suitably protected quinic acid precursors. Chemical
synthesis of these esters is difficult due to phenolic acids
Few studies have explored the role of secondary
metabolic pathways in plant response to oxidative stress.
Among them, emphasis is given to the phenylpropanoid
biosynthetic pathway, which is responsible for the syn-
thesis of a diverse array of flavonoids and other phenolic
metabolites, such as tannins, hydroxycinnamate, and
hydroxybenzoate esters.1 Hydroxycinnamic acids, such as
p-coumaric acid (4-hydroxycinnamic acid), caffeic acid
(3,4-dihydroxycinnamic acid), and ferulic acid (4-hydroxy-
3-methoxycinnamic acid), are largely derived from fruits,
vegetables, grains, and coffee and are normally associated
with quinic acid or sugars as esters.1c,2 Lipid-soluble
esters of phenolic compounds consist of hydroxycinna-
mates linked to sterols, terpene alcohols, or triterpenes.3
In recent years, the phenolic functionality has attracted
much attention and has been studied by many research-
ers.4 Cinnamic derivatives of quinic and shikimic acid
present special relevance. Most intensely studied is
5-caffeoylquinic acid (chlorogenic acid, 1, Figure 1), which
(5) (a) Phytochemical Dictionary, Harborne; J . B., Baxter, H., Eds.;
Taylor & Francis: London, 1993; p 1745. (b) Kroon, P. A.; Wiliamson,
G. J . Sci. Food Agric. 1999, 79, 355-361.
(6) Chang, W.-C.; Hsu, F.-L. Prostaglandins, Leukotrienes Essent.
Fatty Acids 1992, 45, 307-312.
(7) (a) Nogata, Y.; Sekiya, K.; Hideaki, O.; Kusumoto, K.-I.; Ishizu,
T. Phytochemistry 2001, 56, 729-732. (b) Peng, L.-Y.; Mei, S.-X.; J iang,
B.; Zhou, H.; Sun, H.-D. Fitoterapia 2000, 71, 713-715. (c) Naish, M.;
Clifford, M. N.; Birch, G. G. Ann. N. Y. Acad. Sci. 1998, 855, 823-
827.
(8) (a) Slanina, J .; Ta´borska´, E.; Bochora´kova´, H.; Slaninova´, I.;
Humpa, O.; Robinson, W. E., J r.; Schram, K. H. Tetrahedron Lett. 2001,
42, 3383-3385. (b) Robinson, W. E., J r.; Cordeiro, M.; Abdel-Malek,
S.; J ia, Q.; Chow, S. A.; Reinecke, M. G.; Mitchell, W. M. Mol.
Pharmacol. 1996, 50, 846-855. (c) Robinson, W. E., J r.; Reinecke, M.
G.; Abdel-Malek, S.; J ia, Q.; Chow, S. A. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 6326-6331.
(9) (a) Ting, C.; J ianxin, L.; J ingsong, C.; Qiang, X.; Katsuko, K.;
Tsuneo, N. Planta Med. 1999, 65, 56-59. (b) Saito, T.; Yamane, H.;
Murofushi, N.; Takahashi, N.; Phinney, B. O. Biosci. Biotechnol.
Biochem. 1997, 61, 1397-1398. (c) Fukuoka, M. Chem. Pharm. Bull.
1982, 30, 3219-3224. (f) Maier, V. P.; Metzler, D. M.; Huber, A. F.
Biochem. Biophys. Res. Commun. 1964, 14, 124-128.
(10) (a) Fuchs, C.; Spiteller, G. J . Mass Spectrom. 1996, 31, 602-
608. (b) Ossipov, V.; Loponen, N. J .; Haukioja, E.; Pihlaja, K. J .
Chromatogr. A 1996, 721, 59-68. (c) Clifford, M. N.; Kellard, B. Food
Chem. 1989, 33, 115-123. (d) Nagels, L.; Van Dongen, W.; De Bruker,
J .; De Pooter, H. J . Chromatogr. 1980, 187, 181-187.
(11) Um, B. H.; Polat, M.; Lobstein, A.; Weniger, B.; Arago´n, R.;
DeClercq, L.; Anton, R. Fitoterapia 2002, 73, 550-552.
(12) (a) Sefkow, M.; Kelling, A.; Schilde, U. Eur. J . Org. Chem. 2001,
2735-2742. (b) Sefkow, M. Eur. J . Org. Chem. 2001, 1137-1141.
(1) (a) Bate-Smithe, E. C. In The Pharmacology of Plant Phenolic;
Fairbairn, J . W., Ed.; Academic Press: London, 1959; pp 133-149. (b)
Haslam, E. The Biochemistry of Plants; Academic Press: New York,
1981; p 527. (c) Pratt, D. E.; Hudson, B. J . F. In Food Antioxidants;
Hudson, B. J . F., Ed.; Elsevier: London, 1990; p 171.
(2) (a) De Paulis, T.; Schmidt, D. E.; Bruckey, A. K.; Kirby, M. T.;
McDonald, M. P.; Commers, P.; Lovinger, D. M.; Martin, P. R. Eur. J .
Pharmacol. 2002, 442, 215-223. (b) De Mar´ıa, C. A. B.; Trugo, L. C.;
De Mariz e Miranda, L. S. J . Food Compos. Anal. 1999, 12, 289-292.
(c) Adam, K.-P. Phytochemistry 1999, 52, 929-934. (d) Suzuki, M.;
Nagata, T.; Terahara, N. Biosci. Biotech. Biochem. 1997, 61, 1929-
1930.
(3) Seitz, L. M. J . Agric. Food Chem. 1989, 37, 662-667.
(4) (a) Go´ngora, L.; Giner, R. M.; Ma´n˜ez, S.; Recio, M. C.; Schinella,
G.; R´ıos, J . L. Life Sci. 2002, 71, 2995-3004. (b) Cartron, E.;
Carbonneau, M.-A.; Fouret, G.; Descomps, B.; Le´ger, C. L. J . Nat. Prod.
2001, 64, 480-486. (c) Grace, S. C.; Logan, B. A. Philos. Trans. R.
Soc. London B 2000, 355, 1499-1510. (d) Kono, Y.; Shibata, H.;
Kodama, Y.; Sawa, Y. Biochem. J . 1995, 312, 947-953. (e) Tanaka,
T.; Kojima, T.; Kawamori, T.; Wang, A.; Suzui, M.; Okamoto, K.; Mori,
H. Carcinogenesis 1993, 14, 1321-1325.
10.1021/jo034387a CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/17/2003
5784
J . Org. Chem. 2003, 68, 5784-5787