A. Blume et al. / Carbohydrate Research 342 (2007) 1904–1909
1909
transfer of sialyl residues. Nevertheless, substantial
References
transfer can still be observed for the modified substrates.
Although these structural features do not seem to be
crucial for the enzyme activity, they clearly have a mod-
ulating influence. Furthermore, our results show that
shortening of the glycerol chain favors hydrolysis over
the transfer reaction. A biological point of these findings
may point towards a regulatory function of natural
modifications of the glycerol side chain.
1. Schenkman, S.; Eichinger, D.; Pereira, M. E.; Nus-
senzweig, V. Annu. Rev. Microbiol. 1994, 48, 499–523.
2. Tomlinson, S.; Pontes de Carvalho, L. C.; Vandekerckh-
ove, F.; Nussenzweig, V. J. Immunol. 1994, 153, 3141–
3147.
3. Schenkman, S.; Jiang, M. S.; Hart, G. W.; Nussenzweig,
V. Cell 1991, 65, 1117–1125.
4. Paulson, J. C.; Colley, K. J. J. Biol. Chem. 1989, 264,
17615–17618.
The fact that complete transfer of sialyl residues is
not achieved, even if donor and acceptor substrate are
present at equimolar concentrations, implies that the
transfer is essentially controlled by the acceptor concen-
tration. Every sialic acid that binds to TSia is cleaved
from its glycoconjugate and if a glycoconjugate of the
parasite is available it is transferred to this structure; if
not, the sialic acid is transferred to water. Therefore,
the more the parasitic glycoconjugates are available,
the more effective the transfer of sialic acids by TSia
is. Compared to other sugar transferring enzymes, TSia
is relatively inefficient with regard to the transfer reac-
tion. It can be speculated that the ineffective transfer
of T. cruzi TSia is due to the missing evolutionary pres-
sure for an effective transfer reaction. As T. cruzi TSia
uses sialic acids attached to cells of the host organism
and does not have to produce these structures on its
own, it does not make any difference to the parasite
whether these sialic acid residues are transferred to an
acceptor or are just hydrolyzed. In conjunction with pre-
vious findings,5,11–15 our present data extend the basis
for a rational design of specific inhibitors of TSia, the
key enzyme in the T. cruzi life cycle.
5. Todeschini, A. R.; Mendonca-Previato, L.; Previato, J. O.;
Varki, A.; van Halbeek, H. Glycobiology 2000, 10, 213–
221.
6. Mayer, M.; Meyer, B. Angew. Chem., Int. Ed. 1999, 38,
1784–1788.
7. Neubacher, B.; Scheid, S.; Kelm, S.; Frasch, A. C.; Meyer,
B.; Thiem, J. ChemBiochem 2006, 7, 896–899.
8. Neubacher, B.; Schmidt, D.; Ziegelmuller, P.; Thiem, J.
Org. Biomol. Chem. 2005, 3, 1551–1556.
9. Blume, A.; Angulo, J.; Biet, T.; Peters, H.; Benie, A. J.;
Palcic, M.; Peters, T. J. Biol. Chem. 2006, 281, 32728–
32740.
10. Scherf, T.; Anglister, J. Biophys. J. 1993, 64, 754–761.
11. Buschiazzo, A.; Amaya, M. F.; Cremona, M. L.; Frasch,
A. C.; Alzari, P. M. Mol. Cell 2002, 10, 757–768.
12. Watts, A. G.; Damager, I.; Amaya, M. L.; Buschiazzo, A.;
Alzari, P.; Frasch, A. C.; Withers, S. G. J. Am. Chem. Soc.
2003, 125, 7532–7533.
13. Haselhorst, T.; Wilson, J. C.; Liakatos, A.; Kiefel, M. J.;
Dyason, J. C.; von Itzstein, M. Glycobiology 2004, 14,
895–907.
14. Todeschini, A. R.; Girard, M. F.; Wieruszeski, J. M.;
Nunes, M. P.; DosReis, G. A.; Mendonca-Previato, L.;
Previato, J. O. J. Biol. Chem. 2002, 277, 45962–45968.
15. Todeschini, A. R.; Dias, W. B.; Girard, M. F.; Wierusz-
eski, J. M.; Mendonca-Previato, L.; Previato, J. O. J. Biol.
Chem. 2004, 279, 5323–5328.
16. Mayer, M.; Meyer, B. J. Am. Chem. Soc. 2001, 123, 6108–
6117.
17. Blume, A.; Benie, A. J.; Stolz, F.; Schmidt, R. R.; Reutter,
W.; Hinderlich, S.; Peters, T. J. Biol. Chem. 2004, 279,
55715–55721.
Acknowledgement
T.P. and J.T. thank the Deutsche Forschungsgemeins-
chaft (DFG) for financial support within the project
program grant SFB 470.