1276
S. H. Watterson et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1273–1276
supports our hypothesis that a hydrogen bond acceptor
at the 3-position of the indole can interact with Gln 441
in a similar fashion to quinolone 1.
8. Jayaram, H. N.; Grusch, M.; Cooney, D. A.; Krupitza, G.
Curr. Med. Chem. 1999, 6, 561.
9. Carr, S. F.; Papp, E.; Wu, J. C.; Natsumeda, Y. J. Biol.
Chem. 1993, 268, 27286.
10. Anderson, W. K.; Boehm, T. L.; Makara, G. M.; Swann,
R. T. J. Med. Chem. 1996, 39, 46.
11. Nelson, P. H.; Eugui, E.; Wang, C. C.; Allison, A. C. J.
Med. Chem. 1990, 33, 833.
12. Sievers, T. M.; Rossi, S. J.; Ghobrial, R. M.; Arriola, E.;
Nishimura, P.; Kawano, M.; Holt, C. D. Pharmacotherapy
1997, 17, 1178.
13. Papageorgiou, C. Mini-Rev. Med. Chem. 2001, 1, 71.
14. Shipkova, M.; Wieland, E.; Schutz, E.; Wiese, C.; Nied-
mann, P. D.; Oellerich, M.; Armstrong, V. W. Transplant.
Proc. 2001, 33, 1080.
15. Dhar, T. G. M.; Shen, Z.; Guo, J.; Liu, C.; Watterson,
S. H.; Gu, H. H.; Pitts, W. J.; Fleener, C. A.; Rouleau, K. A.;
Sherbina, N. Z.; McIntyre, K. W.; Witmer, M. R.; Tredup,
J. A.; Chen, B.-C.; Zhao, R.; Bednarz, M. S.; Cheney, D. L.;
MacMaster, J. F.; Miller, L. M.; Berry, K. K.; Harper, T. W.;
Barrish, J. C.; Hollenbaugh, D. L.; Iwanowicz, E. J. J. Med.
Chem. 2002, 45, 2127.
16. Armistead, D. M.; Badia, M. C.; Bemis, G. W.; Bethiel, R.
S.; Frank, C. A.; Novak, P. M.; Ronkin, S. M.; Saunders, J.
O. PCT Int. Appl., WO 9740028, 1997; Chem Abstr. 1997, 128,
3680.
17. Jain, J.; Almquist, S. J.; Shlyakhter, D.; Harding, M. W.
J. Pharm. Sci. 2001, 90, 625.
18. Watterson, S. H.; Liu, C.; Dhar, T. G. M.; Gu, H. H.;
Pitts, W. J.; Barrish, J. C.; Fleener, C. A.; Rouleau, K.; Sher-
bina, N. Z.; Hollenbaugh, D.; Iwanowicz, E. J. Bioorg. Med.
Chem. Lett. 2002, 12, 2879.
19. Iwanowicz, E. J.; Watterson, S. H.; Liu, C.; Gu, H. H.;
Barrish, J. C.; Fleener, C. A.; Rouleau, K.; Sherbina, N. Z.;
Hollenbaugh, D. Bioorg. Med. Chem. Lett. 2002, 12, 2931.
20. Gu, H. H.; Iwanowicz, E. J.; Guo, J.; Watterson, S. H.;
Zhen, Z.; Pitts, W. J.; Dhar, T. G. M.; Fleener, C. A.; Rou-
leau, K.; Sherbina, N. Z.; Witmer, M.; Tredup, J.; Hollen-
baugh, D. Bioorg. Med. Chem. Lett. 2002, 12, 1323.
21. Pitts, W. J.; Guo, J.; Dhar, T. G. M.; Shen, Z.; Gu, H. H.;
Watterson, S. H.; Bednarz, M. S.; Chen, B.-C.; Barrish, J. C.;
Bassolino, D.; Cheney, D.; Fleener, C. A.; Rouleau, K. A.;
Hollenbaugh, D. L.; Iwanowicz, E. J. Bioorg. Med. Chem.
Lett. 2002, 12, 2137.
22. Watterson, S. H.; Carlsen, C.; Dhar, T. G. M.; Shen, Z.;
Pitts, W. J.; Guo, J.; Gu, H. H.; Norris, D.; Chorba, J.; Chen,
P.; Cheney, D.; Witmer, M.; Fleener, C. A.; Rouleau, K.;
Townsend, R.; Hollenbaugh, D.; Iwanowicz, E. J. Bioorg.
Med. Chem. Lett. 2003, 13, 543.
With improvement in activity with the addition of a
hydrogen bond acceptor moiety at the 3-position, we
next focused our attention on improving the trajectory
of the appended R1 phenyl group. The structural over-
lap of indole 3 and quinolone 1 in Figure 3 indicated
that the orientation of the indole phenyl ring needed to
be optimized to fully mimic the spatial arrangement of
the quinolone core. Our first approach in addressing
this issue was through a benzyl substituent. Indole 3f
with a benzyl substituent did not offer any improvement
over indole 2. Consequently, the appendage of a formyl
or nitrile substituent at the 3-position of the indole core
(3g and 3h) did not improve potency relative to 3b and
3c, respectfully. In an effort to lower the entropy of the
benzyl group and further optimize the orientation rela-
tive to the phenyl group of quinolone 1, a benzothio-
phene substituent was explored. Although the core
indole 3i was equivalent to indole 2 in the inhibition of
IMPDH type II (IC50=0.50 mM), the addition of a
hydrogen bond acceptor at the 3-position provided a
significant enhancement in binding affinity. The formyl-
substituted indole (3j) and the nitrile-substitituted indole
(3k) had IC50 values against IMPDH type II of 0.030 and
0.064 mM, respectfully. Indole 3j also showed good selec-
tivity versus IMPDH type I (IC50=0.160mM).26 Fur-
thermore, analogue 3j had an IC50 value of 0.55mM in a
T-cell proliferation assay (CEM).29
In summary, we have developed a novel indole-based
series of potent inhibitors of IMPDH type II. Through
the incorporation of a hydrogen bond acceptor at the 3-
position of indole 3, we have demonstrated that we can
significantly improve binding affinity, as seen in indole
3j, which has an IC50 value of 30 nM. Studies to opti-
mize this series of analogues to achieve oral activity in a
T-cell mediated pharmacodynamic model are ongoing.
The emphasis of future studies is to evaluate this series
relative to MPA and other IMPDH inhibitors, as well
as to establish in vivo the relationship between efficacy
and toxicity.
23. Dhar, T. G. M.; Watterson, S. H.;; Chen, P.; Shen, Z.; Gu,
H. H.; Norris, D.; Carlsen, M.; Haslow, K.; Pitts, W. J.; Guo, J.;
Chorba, J.; Fleener, C. A.; Rouleau, K.; Townsend, R.; Hollen-
baugh, D.; Iwanowicz, E. J. Bioorg. Med. Chem. Lett. 2003, 13,
547.
References and Notes
1. Zimmerman, A. G.; Gu, J. J.; Laliberte, J.; Mitchell, B. S.
Prg. Nucleic Acid Res. Mol. Biol. 1998, 61, 181.
2. Jackson, R. C.; Weber, G. Nature 1975, 256, 331.
3. Sintchak, M. D.; Nimmesgern, E. Immunopharmacology
2000, 47, 163.
4. Hedstrom, L. Curr. Med. Chem. 1999, 6, 545.
5. Collart, F. R.; Huberman, E. J. Biol. Chem. 1988, 263,
15769.
24. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 50, 4467.
25. Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P.
Angew. Chem., Int. Ed. 2000, 39, 2488.
26. Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara,
N. Synthesis 1980, 627.
27. Hynes, J. Jr.; Leftheris, K.; Watterson, S. H. unpublished
work in our laboratories.
6. Natsumeda, Y.; Ohno, S.; Kawasaki, H.; Konno, Y.;
Weber, G.; Suzuki, K. J. Biol. Chem. 1990, 265, 5292.
7. Collart, F. R.; Huberman, E. US Patent 5,665,583, 1997;
Chem Abstr. 1990, 113, 186070.
28. The IMPDH enzymatic inhibition protocol is outlined in
ref 22 (ref 27).
29. The CEM proliferation protocol is outlined in ref 18
(ref 21).