A. Jha et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4545–4550
4549
10. (a) Pradoa, S. R. T.; Filhob, V. C.; Buzzib, F. C.; Correab,
R.; Cadena, S. M. C. S.; de Oliveira, M. B. M. Z.
Naturforsch., C 2004, 59, 663; (b) Marrian, D. H.;
Friedmann, E.; Ward, J. L. Biochemistry 1953, 54, 5.
15 min. After completion of reaction the mixture was
allowed to cool to room temperature and the reaction
mixture quenched with ice cold water. The precipitate was
filtered and dried, and the crude product was purified by
column chromatography using DCM as eluent. Analytical
data for 3a: yield 17%; mp 197–200 ꢁC; 1H NMR (DMSO-
d6): d 7.25 (2H, s, pyrrole-Hs), 7.47–7.49 (3H, m, Ar-H),
7.58 (2H, d, J = 8.5 Hz, Ar-H), 7.78 (1H, d, J = 15.7 Hz,
E-vinylic-H), 7.90–7.93 (2H, m, Ar-H), 7.98(1H, d,
J = 15.7 Hz, E-vinylic-H), 8.28 (2H, d, J = 8.5 Hz, Ar-
H); 13C NMR (DMSO-d6): d 122.83, 127.17, 129.82,
130.07, 131.62, 135.47, 135.77, 136.58, 137.06, 145.17,
170.43, 189.32; IR (KBr): m 3435, 3083, 1704, 1662, 1604,
1384, 1307 cmꢁ1; UV–vis (MeOH): kmax 220, 318 nm;
HRMS Calcd: 303.0895, found: 303.0899. For 3b: yield
56%; mp 175–177 ꢁC; 1H NMR (DMSO-d6): d 6.93 (2H, s,
pyrrole-Hs), 7.42 (2H, d, J = 8.2 Hz, Ar-H), 7.51(1H, d,
J = 15.7 Hz, E-vinylic-H), 7.58–7.63 (4H, m, Ar-H), 7.80
(1H, d, J = 15.9 Hz, E-vinylic-H), 8.13 (2H, d, J = 8.4 Hz,
Ar-H); 13C NMR (DMSO-d6): d 119.64, 123.56, 127.15,
129.84, 130.11, 131.39, 131.52, 135.78, 136.94, 143.65,
170.42, 189.18; IR (KBr): m 3427, 3071, 1716, 1660, 1608,
1384, 1305 cmꢁ1; UV–vis (MeOH): kmax 204, 226, 324 nm;
HRMS Calcd: 337.0505, found: 337.0501. For 3c: yield
94%; 207–210 ꢁC; 1H NMR (DMSO-d6): d 7.25 (2H, s,
pyrrole-Hs), 7.59 (2H, d, J = 8.5 Hz, Ar-H), 7.71–7.77
(2H, m, Ar-H, E-vinylic-H), 7.89–7.92 (1H, m, Ar-H), 8.09
(1H, d, J = 15.6 Hz, E-vinylic-H), 8.29–8.31 (3H, m, Ar-
H); 13C NMR (DMSO-d6): d 124.80, 127.15, 130.12,
130.22, 131.09, 131.90, 132.70, 133.68, 135.80, 136.41,
136.74, 136.79, 142.30, 170.43, 189.02; IR (KBr): m 3427,
11. Andricopulo, A. D.; Muller, L. A.; Cechinel Filho, V.;
¨
Cani, G. S.; Roos, J. F.; Correa, R.; Santos, A. R. S.;
Nunes, R. J.; Yunes, R. A. Farmaco 2000, 55, 319.
12. Kovac, A.; Wilson, R. A.; Besra, G. S.; Filipic, M.; Kikelj,
D.; Gobec, S. J. Enzyme Inhib. Med. Chem. 2006, 21, 391.
13. Hall, I. H.; Wong, O. T.; Chapman, J. M. Anticancer
Drugs 1995, 6, 147.
14. Bailly, C.; Qu, X.; Chaires, J. B.; Colson, P.; Houssier, C.;
Ohkubo, M.; Nishimura, S.; Yoshinari, T. J. Med. Chem.
1999, 42, 2927.
15. Yellaturu, C. R.; Manjula, B.; Neeli, I.; Rao, G. N. J. Biol.
Chem. 2002, 227, 40148.
16. Jensen, L. H.; Renodon-Corniere, A.; Wessel, I.; Langer,
S. W.; Søkilde, B.; Carstensen, E. V.; Sehested, M.; Jensen,
P. B. Mol. Pharmacol. 2002, 61, 1235.
17. Dimmock, J. R.; Jha, A.; Zello, G. A.; Allen, T. M.;
Santos, C. L.; Balzarini, J.; De Clercq, E.; Manavathu, E.
K.; Stables, J. P. Pharmazie 2003, 58, 227.
18. Dimmock, J. R.; Kandepu, N. M.; Hetherington, M.;
Quail, J. W.; Pugazhenthi, U.; Sudom, A. M.; Chaman-
khah, M.; Rose, P.; Pass, E.; Allen, T. M.; Halleran, S.;
Szydlowski, J.; Mutus, B.; Tannous, M.; Manavathu, E.
K.; Myers, T. M.; De Clercq, E.; Balzarini, J. J. Med.
Chem. 1998, 41, 1014.
19. Go, M. L.; Wu, X.; Liu, X. L. Curr. Med. Chem. 2005, 12,
483.
20. Dimmock, J. R.; Elias, D. W.; Beazely, M. A.; Kandepu,
N. M. Curr. Med. Chem. 1999, 6, 1125.
3071, 1720, 1637, 1608, 1384, 1305 cmꢁ1
; UV–vis
21. Dimmock, J. R.; Kandepu, N. M.; Nazarali, A. J.;
Motaganahalli, N. L.; Kowalchuk, T. P.; Pugazhenthi,
U.; Prisciak, J. S.; Quail, J. W.; Allen, T. M.; LeClerc, R.;
Santos, C. L.; De Clercq, E.; Balzarini, J. J. Med. Chem.
2000, 43, 3933.
(MeOH): kmax 204, 207 nm; HRMS Calcd: 371.0116,
found: 371.0093. For 3d: yield 50%; mp 178–181 ꢁC; 1H
NMR (DMSO-d6): d 3.37 (3H, s, CH3), 7.24 (2H, s,
pyrrole-Hs), 7.28 (2H, d, J = 8.1 Hz, Ar-H), 7.56 (2H,
d,J = 8.5 Hz, Ar-H), 7.75 (1H, d, J = 15.8 Hz, E-vinylic-
H), 7.80 (2H, d, J = 8.1 Hz, Ar-H), 7.80 (1H, d,
J = 15.6 Hz, E-vinylic-H), 8.26 (2H, d, J = 8.5 Hz, Ar-
H); 13C NMR (DMSO-d6): d 21.97, 121.75, 127.11, 129.86,
130.00, 130.43, 132.78, 135.75, 136.49, 137.18, 141.71,
145.22, 170.43, 189.22; IR (KBr): m 3427, 3071, 1716, 1660,
22. (a) Barakat, M. Z.; Shehab, S. K.; El-Sadr, M. M.
J. Chem. Soc. 1957, 4133; (b) Lui, K. C.; Chen, T.; Jan, H.;
Shih, C. J. Chin. Chem. Soc. 1973, 20, 163.
1
23. (a) Analytical data for 2h: yield 60%, mp 195–200 ꢁC, H
NMR (DMSO-d6): d 6.38 (1H, d, J = 12.0 Hz, Z-vinylic-
H), 6.60 (1H, d, J = 12.0 Hz, Z-vinylic-H), 7.76 (1H, d,
J = 15.6 Hz, E-vinylic-H), 7.84 (2H, d, J = 8.5 Hz, Ar-H),
7.91–8.03 (4H, m, Ar-H), 8.07 (1H, d, J = 15.6 Hz, E-
vinylic-H), 8.19 (2H, d, J = 8.5 Hz, Ar-H), 11.00 (1H, s,
NHCO); 13C NMR (DMSO-d6): d 123.20, 128.53, 133.22,
134.06, 134.36, 135.25, 136.34, 136.76, 143.24, 146.34,
147.77, 168.03, 171.19, 171.45, 191.84; IR (KBr): m 3447,
1734, 1718, 1700, 1696, 1603, 1560, 1384, 1326 cmꢁ1; UV–
vis (MeOH): kmax 310 nm; ESI-MS (MꢁH)ꢁ Calcd:
365.09, found: 363.90. For 2i: yield 79%; mp 198–200 ꢁC;
1H NMR (DMSO-d6): d 6.12 (2H, s, OCH2O), 6.36 (1H, d,
J = 12.0 Hz, Z-vinylic-H), 6.54 (1H, d, J = 12.0 Hz, Z-
vinylic-H), 7.00 (1H, d, J = 8.1 Hz, Ar-H), 7.15–7.60 (2H,
m, Ar-H), 7.64–7.95 (5H, m, E-vinylic-H, Ar-H), 8.17 (1H,
d, J = 8.6 Hz, Ar-H), 10.74 (1H, s, NHCO); 13C NMR
(DMSO-d6): d 102.51, 107.78, 109.39, 119.62, 120.73,
126.71, 130.15, 130.68, 131.21, 132.36, 133.73, 143.83,
144.38, 148.96, 150.35, 164.56, 167.86, 188.26; IR (KBr): m
3447, 3286, 3208, 3118, 1709, 1647, 1631, 1593, 1534, 1500,
1608, 1384, 1305 cmꢁ1
; UV–vis (MeOH): kmax 231,
332 nm; HRMS Calcd: 317.1052, found: 317.1050. For
1
3e: yield 99%; 165–167 ꢁC; H NMR (DMSO-d6): d 3.88
(3H, s, OCH3), 6.97 (2H, d, J = 8.6 Hz, Ar-H), 7.28 (2H, s,
pyrrole-Hs), 7.41 (1H, d, J = 15.7 Hz, E-vinylic-H), 7.56–
7.65 (4H, m, Ar-H), 7.82 (1H, d, J = 15.7 Hz, E-vinylic-
H), 8.13 (2H, d, J = 8.4 Hz, Ar-H); 13C NMR (DMSO-d6):
d 56.27, 115.31, 120.29, 127.13, 129.93, 131.76, 135.76,
136.37, 137.37, 145.17, 170.45, 189.11; IR (KBr): m 3431,
3093, 1712, 1660, 1608, 1384, 1304, 1030 cmꢁ1; UV–vis
(MeOH): kmax 204, 235, 347 nm; HRMS Calcd: 333.1001,
1
found: 333.0989. For 3f: 92%; mp 200–201 ꢁC; H NMR
(DMSO-d6): d 3.83 (6H, s, OCH3), 7.25 (2H, s, pyrrole-
Hs), 7.41 (2H, d, J = 8.4 Hz, Ar-H), 7.86 (1H, d,
J = 15.6 Hz, E-vinylic-H), 7.58–7.63 (4H, m, Ar-H), 8.26
(1H, d, J = 15.3 Hz, E-vinylic-H), 7.58 (2H, d, J = 8.4 Hz,
Ar-H); 13C NMR (DMSO-d6): d 56.48, 56.61, 111.65,
112.43, 120.37, 124.97, 127.11, 128.30, 129.94, 135.77,
136.37, 137.41, 145.69, 149.89, 152.26, 170.45, 189.14; IR
1384, 1360, 1262, 1243, 1177, 1033, 847, 834, 802 cmꢁ1
;
(KBr): m 3447, 2926, 1718, 1654, 1605, 1384, 1015 cmꢁ1
;
UV–vis (MeOH): kmax 362 nm; ESI-MS (MꢁH)ꢁ Calcd:
365.09, found: 363.90; (b) General procedure for synthesis
of compounds 3a–i. A mixture of anhydrous NaOAc
(5 mmol) and acetic anhydride (20 mmol) was heated at
90 ꢁC with stirring until all NaOAc had dissolved. The
appropriate 40-aminochalcone maleamic acid analog 2a–i
was added and stirred at the noted temperature range for
UV–vis (MeOH): kmax 204, 235, 347 nm; HRMS Calcd:
363.1106, found: 363.1117. For 3g: 40%; mp 200–202 ꢁC;
1H NMR (DMSO-d6): d 7.25 (2H, s, pyrrole-Hs), 7.61
(2H, d, J = 8.5 Hz, Ar-H), 7.86 (1H, d, J = 15.7 Hz, E-
vinylic-H), 8.15–8.21 (3H, m, E-vinylic-H and Ar-H),
8.30–8.33 (4H, d, J = 8.6 Hz, Ar-H); 13C NMR (DMSO-
d6): d 124.83, 126.85, 127.18, 130.28, 130.81, 135.81,